Home
Class 12
MATHS
If sum(n=0)^oo2cot^(-1) ((n^2+n-4)/2)=kp...

If `sum_(n=0)^oo2cot^(-1) ((n^2+n-4)/2)=kpi` then find the value of k

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite sum: \[ \sum_{n=0}^{\infty} 2 \cot^{-1} \left( \frac{n^2 + n - 4}{2} \right) = k\pi \] ### Step 1: Rewrite the cotangent inverse We know that: \[ \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \] Thus, we can rewrite the term inside the sum: \[ \cot^{-1}\left(\frac{n^2 + n - 4}{2}\right) = \tan^{-1}\left(\frac{2}{n^2 + n - 4}\right) \] ### Step 2: Simplify the argument Next, we simplify the expression: \[ \frac{2}{n^2 + n - 4} \] This can be factored or rewritten in a more manageable form. The quadratic \(n^2 + n - 4\) can be expressed as: \[ n^2 + n - 4 = (n - 2)(n + 2) + 2 \] However, for our purposes, we can directly work with the original form. ### Step 3: Use the identity for the sum We can use the identity for the difference of inverse tangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] By manipulating the terms, we can express the series in terms of a telescoping series. ### Step 4: Telescoping series The sum can be expressed as: \[ \sum_{n=0}^{\infty} \left( \tan^{-1}\left(\frac{1}{n + 2}\right) - \tan^{-1}\left(\frac{1}{n + 1}\right) \right) \] This will telescope, meaning that most terms will cancel out. ### Step 5: Evaluate the limit As \(n\) approaches infinity, we find: \[ \lim_{n \to \infty} \tan^{-1}\left(\frac{1}{n + 2}\right) = 0 \] The first term of the series when \(n=0\) gives us: \[ \tan^{-1}(1) = \frac{\pi}{4} \] Thus, the entire sum converges to: \[ \frac{\pi}{4} \] ### Step 6: Multiply by 2 Since we have a factor of 2 in front of the cotangent inverse, we multiply the result by 2: \[ 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} \] ### Step 7: Relate to \(k\pi\) Now we have: \[ \frac{\pi}{2} = k\pi \] From this, we can solve for \(k\): \[ k = \frac{1}{2} \] ### Final Answer Thus, the value of \(k\) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|3 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Let f(n)=sum_(k=-n)^(n)(cot^(-1)((1)/(k))-tan^(-1)(k)) such that sum_(n=2)^(10)(f(n)+f(n-1))=a pi then find the value of (a+1) .

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1) ^(oo) (1)/((2n-1)!)=

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

sum_(n=1)^(oo) ((log_ex)^(2n-1))/((2n-1)!)=

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

sum_(n=1)^(oo)((1)/(4n-3)-(1)/(4n-1))=(pi)/(n) find n

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =