Home
Class 12
MATHS
If a x+b y+c z=p , then minimum value of...

If `a x+b y+c z=p` , then minimum value of `x^2+y^2+z^2` is `(p/(a+b+c))^2` (b) `(p^2)/(a^2+b^2+c^2)` `(a^2+b^2+c^2)/(p^2)` (d) `((a+b+c)/p)^2`

A

`((p)/(a+b+c))^(2)`

B

`(p^(2))/(a^(2)+b^(2)+c^(2))`

C

`(a^(2)+b^(2)+c^(2))/(p^(2))`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( x^2 + y^2 + z^2 \) given the equation \( ax + by + cz = p \), we can use the method of Lagrange multipliers or geometric interpretation. Here’s a step-by-step solution: ### Step 1: Understand the Problem We are given a linear equation in three variables \( ax + by + cz = p \) and we need to minimize the expression \( x^2 + y^2 + z^2 \). ### Step 2: Set Up the Distance The expression \( x^2 + y^2 + z^2 \) represents the square of the distance from the origin (0, 0, 0) to the point (x, y, z). We want to find the point on the plane defined by \( ax + by + cz = p \) that is closest to the origin. ### Step 3: Use the Distance Formula The distance \( d \) from the origin to the plane can be calculated using the formula for the distance from a point to a plane. The distance \( d \) from the point (0, 0, 0) to the plane \( ax + by + cz = p \) is given by: \[ d = \frac{|ax_0 + by_0 + cz_0 - p|}{\sqrt{a^2 + b^2 + c^2}} \] where \( (x_0, y_0, z_0) \) is the point (0, 0, 0). ### Step 4: Substitute the Values Substituting \( x_0 = 0 \), \( y_0 = 0 \), and \( z_0 = 0 \) into the distance formula gives: \[ d = \frac{|0 + 0 + 0 - p|}{\sqrt{a^2 + b^2 + c^2}} = \frac{| - p |}{\sqrt{a^2 + b^2 + c^2}} = \frac{p}{\sqrt{a^2 + b^2 + c^2}} \] ### Step 5: Find the Minimum Value of \( x^2 + y^2 + z^2 \) Since \( d^2 = x^2 + y^2 + z^2 \), we have: \[ x^2 + y^2 + z^2 = d^2 = \left( \frac{p}{\sqrt{a^2 + b^2 + c^2}} \right)^2 = \frac{p^2}{a^2 + b^2 + c^2} \] ### Conclusion Thus, the minimum value of \( x^2 + y^2 + z^2 \) given the constraint \( ax + by + cz = p \) is: \[ \frac{p^2}{a^2 + b^2 + c^2} \] ### Final Answer The correct option is (b) \( \frac{p^2}{a^2 + b^2 + c^2} \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

The minimum value of (b^2p_1)/c+(c^2p_2)/a+(a^2p_3)/b\ is

If a,b,c are in H.P , b,c,d are in G.P and c,d,e are in A.P. , then the value of e is (a) (ab^(2))/((2a-b)^(2)) (b) (a^(2)b)/((2a-b)^(2)) (c) (a^(2)b^(2))/((2a-b)^(2)) (d) None of these

If a ,b ,c ,and d are in H.P., then find the value of (a^(-2)-d^-2)/(b^(-2)-c^-2) .

If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

If a, b, c , d are in G.P. , then shown that (i) (a + b)^(2) , (b +c)^(2), (c + d)^(2) are in G.P. (ii) (1)/(a^(2) + b^(2)), (1)/(b^(2) +c^(2)), (1)/(c^(2) + d^(2)) are in G.P.

If a, b, c are in G.P. and b-c, c-a, a-b are in H.P. then find the value of ((a+b+c)^(2))/(b^(2)) .

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2 .

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2 .

If a, b, c ,d be in G.P. , show that (i) (b -c)^(2) + (c - a)^(2) +(d -b)^(2) = (a - d)^(2) (ii) a^(2) + b^(2) + c^(2) , ab + bc + cd , b^(2) + c^(2) + d^(2) are in G.P.

In a right triangle A B C right-angled at B , if P a n d Q are points on the sides A Ba n dA C respectively, then (a) A Q^2+C P^2=2(A C^2+P Q^2) (b) 2(A Q^2+C P^2)=A C^2+P Q^2 (c) A Q^2+C P^2=A C^2+P Q^2 (d) A Q+C P=1/2(A C+P Q)dot