Home
Class 12
MATHS
A straight line L cuts the sides AB, AC,...

A straight line L cuts the sides AB, AC, AD of a parallelogram ABCD at `B_(1), C_(1), d_(1)` respectively. If `vec(AB_(1))=lambda_(1)vec(AB), vec(AD_(1))=lambda_(2)vec(AD) and vec(AC_(1))=lambda_(3)vec(AC),

A

`lambda_(1), lambda_(3) and lambda_(2) ` are in AP

B

`lambda_(1), lambda_(3) and lambda_(2)` are in GP

C

`lambda_(1),lambda_(3) and lambda_(2)` are in HP

D

`lambda_(1)+lambda_(2)+lambda_(3)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given information about the parallelogram ABCD and the line L that intersects its sides. ### Step 1: Define the vectors Let: - \( \vec{AB} = \vec{a} \) - \( \vec{AD} = \vec{b} \) - \( \vec{AC} = \vec{a} + \vec{b} \) ### Step 2: Express the intersection points in terms of the vectors Given: - \( \vec{AB_1} = \lambda_1 \vec{AB} = \lambda_1 \vec{a} \) - \( \vec{AD_1} = \lambda_2 \vec{AD} = \lambda_2 \vec{b} \) - \( \vec{AC_1} = \lambda_3 \vec{AC} = \lambda_3 (\vec{a} + \vec{b}) \) ### Step 3: Find the vector \( \vec{B_1D_1} \) Using the points \( B_1 \) and \( D_1 \): \[ \vec{B_1D_1} = \vec{AD_1} - \vec{AB_1} = \lambda_2 \vec{b} - \lambda_1 \vec{a} \] ### Step 4: Find the vector \( \vec{C_1B_1} \) Using the points \( C_1 \) and \( B_1 \): \[ \vec{C_1B_1} = \vec{AB_1} - \vec{AC_1} = \lambda_1 \vec{a} - \lambda_3 (\vec{a} + \vec{b}) = (\lambda_1 - \lambda_3) \vec{a} - \lambda_3 \vec{b} \] ### Step 5: Establish collinearity condition Since \( \vec{B_1D_1} \) and \( \vec{C_1B_1} \) are collinear, we can write: \[ \vec{C_1B_1} = k \vec{B_1D_1} \] for some scalar \( k \). ### Step 6: Set up the equations From the collinearity condition, we get: \[ (\lambda_1 - \lambda_3) \vec{a} - \lambda_3 \vec{b} = k (\lambda_2 \vec{b} - \lambda_1 \vec{a}) \] ### Step 7: Compare coefficients Comparing coefficients of \( \vec{a} \) and \( \vec{b} \): 1. Coefficient of \( \vec{a} \): \[ \lambda_1 - \lambda_3 = -k \lambda_1 \] Rearranging gives: \[ \lambda_1 + k \lambda_1 = \lambda_3 \implies \lambda_1(1 + k) = \lambda_3 \implies k = \frac{\lambda_3 - \lambda_1}{\lambda_1} \] 2. Coefficient of \( \vec{b} \): \[ -\lambda_3 = k \lambda_2 \] Substituting \( k \): \[ -\lambda_3 = \frac{\lambda_3 - \lambda_1}{\lambda_1} \lambda_2 \] ### Step 8: Solve for \( \lambda_3 \) Rearranging gives: \[ -\lambda_3 \lambda_1 = (\lambda_3 - \lambda_1) \lambda_2 \] Expanding and rearranging leads to: \[ \lambda_1 \lambda_3 + \lambda_2 \lambda_3 = \lambda_1 \lambda_2 \] Factoring out \( \lambda_3 \): \[ \lambda_3 (\lambda_1 + \lambda_2) = \lambda_1 \lambda_2 \implies \lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} \] ### Step 9: Find \( \frac{1}{\lambda_3} \) Taking the reciprocal: \[ \frac{1}{\lambda_3} = \frac{\lambda_1 + \lambda_2}{\lambda_1 \lambda_2} \] ### Final Answer Thus, the value of \( \frac{1}{\lambda_3} \) is: \[ \frac{1}{\lambda_3} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

A straight line L cuts the lines A B ,A Ca n dA D of a parallelogram A B C D at points B_1, C_1a n dD_1, respectively. If ( vec A B)_1,lambda_1 vec A B ,( vec A D)_1=lambda_2 vec A Da n d( vec A C)_1=lambda_3 vec A C , then prove that 1/(lambda_3)=1/(lambda_1)+1/(lambda_2) .

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

Let B_1,C_1 and D_1 are points on AB,AC and AD of the parallelogram ABCD, such that vec(AB_1)=k_1vec(AC,) vec(AC_1)=k_2vec(AC) and vec(AD_1)=k_2 vec(AD,) where k_1,k_2 and k_3 are scalar.

In a parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC)

vec(AC) and vec(BD) are the diagonals of a parallelogram ABCD. Prove that (i) vec(AC) + vec(BD) - 2 vec(BC) (ii) vec(AC) - vec(BD) - 2vec(AB)

E and F are the interior points on the sides BC and CD of a parallelogram ABCD. Let vec(BE)=4vec(EC) and vec(CF)=4vec(FD) . If the line EF meets the diagonal AC in G, then vec(AG)=lambda vec(AC) , where lambda is equal to :

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

If D and E are the mid-points of sides AB and AC of a triangle A B C respectively, show that vec B E+ vec D C=3/2 vec B Cdot

If D,E and F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC and lambda is scalar, such that vec(AD) + 2/3vec(BE)+1/3vec(CF)=lambdavec(AC) , then lambda is equal to

Let vec a , vec b ,vec c are three non- coplanar vectors such that vecr_(1)=veca + vec c , vecr_(2)= vec b+vec c -veca , vec r_(3) = vec c + vec a + vecb, vec r = 2 vec a - 3 vec b + 4 vec c. If vec r = lambda_(1)vecr_(1)+lambda_(2)vecr_(2)+lambda_(3)vecr_(3) , then