Home
Class 12
MATHS
If veca and vec b are non-zero, non-col...

If `veca and vec b` are non-zero, non-collinear vectors such that `|veca|=2, veca*vecb=1` and angle between `veca and vec b` is `(pi)/(3)`. If `vecr` is any vector such that `vecr*veca=2, vecr*vecb=8, (vec r+2veca-10vecb)*(vecaxxvecb)=4sqrt(3)` and satisfy to `vecr+2veca-10vecb=lambda(veca xx vec b)`, then `lambda` is equal to : (a) `1/2` (b) 2 (c) `1/4` (d) none of these

A

`(1)/(2)`

B

2

C

`(1)/(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the information given in the question and apply the relevant mathematical concepts. ### Step 1: Determine the Magnitude of Vector B We know that: - \( |\vec{a}| = 2 \) - \( \vec{a} \cdot \vec{b} = 1 \) - The angle \( \theta \) between \( \vec{a} \) and \( \vec{b} \) is \( \frac{\pi}{3} \). Using the dot product formula: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta) \] Substituting the known values: \[ 1 = 2 |\vec{b}| \cos\left(\frac{\pi}{3}\right) \] Since \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \): \[ 1 = 2 |\vec{b}| \cdot \frac{1}{2} \] This simplifies to: \[ 1 = |\vec{b}| \] Thus, the magnitude of vector \( \vec{b} \) is \( 1 \). ### Step 2: Analyze the Vector \( \vec{r} \) We are given: - \( \vec{r} \cdot \vec{a} = 2 \) - \( \vec{r} \cdot \vec{b} = 8 \) ### Step 3: Set Up the Equation for \( \vec{r} \) We also have: \[ \vec{r} + 2\vec{a} - 10\vec{b} = \lambda (\vec{a} \times \vec{b}) \] Taking the dot product of both sides with \( \vec{a} \times \vec{b} \): \[ (\vec{r} + 2\vec{a} - 10\vec{b}) \cdot (\vec{a} \times \vec{b}) = \lambda (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) \] ### Step 4: Calculate \( (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b}) \) The magnitude of \( \vec{a} \times \vec{b} \) is given by: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\theta) \] Substituting the known values: \[ |\vec{a} \times \vec{b}| = 2 \cdot 1 \cdot \sin\left(\frac{\pi}{3}\right) = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \] Thus: \[ |\vec{a} \times \vec{b}|^2 = 3 \] ### Step 5: Substitute and Solve for \( \lambda \) Now substituting back into our equation: \[ (\vec{r} + 2\vec{a} - 10\vec{b}) \cdot (\vec{a} \times \vec{b}) = \lambda \cdot 3 \] We also know: \[ \vec{r} + 2\vec{a} - 10\vec{b} \cdot (\vec{a} \times \vec{b}) = 4\sqrt{3} \] So we have: \[ 4\sqrt{3} = \lambda \cdot 3 \] Thus: \[ \lambda = \frac{4\sqrt{3}}{3} \] ### Step 6: Check the Options The calculated value of \( \lambda \) is \( \frac{4\sqrt{3}}{3} \). Since this does not match any of the provided options, we conclude that the answer is: **(d) none of these.**
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

If veca , vecb and vec(c ) are there vectors such that veca + vecb = vec(C ) and further a^2 +b^2 =c ^2 find the angle between veca and vecb ?

If veca , vecb are unit vectors such that |vec a+vecb|=-1 " then " |2veca -3vecb| =

If vec a \ a n d \ vec b are two non-collinear unit vector, and ∣ ​ veca + vecb ∣ ​ = 3 ​ then (2 veca −5 vecb ).(3 veca + vecb ) =

If veca and vecb are non-zero, non parallel vectors, then the value of |veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2) equals

Let veca,vecb and vecc be three vectors such that |veca |=sqrt(3),|vec b|=5 , vec b .vec c = 10 and the angle between vec b and vec c is pi/3, if vec a is perpendicular to the vector vec b xx vec c, then | veca xx (vecbxxvecc)| is equal to __________.

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If vec a , vec ba n d vec c are three non coplanar vectors, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

If veca and vecb are unit vectors, then angle between veca and vecb for sqrt3 ​ veca − vec b to be unit vector is