Home
Class 12
MATHS
Given vec(a)=3hati+2hatj+4hatk,vec(b)=2(...

Given `vec(a)=3hati+2hatj+4hatk,vec(b)=2(hati+hatk)` and `vec( c )=4hati+2hatj+3hatk`. Find for what number of distinct values of `alpha` the equation `x vec(a)+y vec(b)+z vec( c )=alpha(x hati+y hatj+z hatk)` has non-trival solution (x, y, z).

A

-1

B

4

C

7

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x \vec{a} + y \vec{b} + z \vec{c} = \alpha (x \hat{i} + y \hat{j} + z \hat{k}) \) for distinct values of \( \alpha \), we start by substituting the given vectors: 1. **Given Vectors:** - \( \vec{a} = 3 \hat{i} + 2 \hat{j} + 4 \hat{k} \) - \( \vec{b} = 2 (\hat{i} + \hat{k}) = 2 \hat{i} + 0 \hat{j} + 2 \hat{k} \) - \( \vec{c} = 4 \hat{i} + 2 \hat{j} + 3 \hat{k} \) 2. **Substituting into the Equation:** \[ x(3 \hat{i} + 2 \hat{j} + 4 \hat{k}) + y(2 \hat{i} + 0 \hat{j} + 2 \hat{k}) + z(4 \hat{i} + 2 \hat{j} + 3 \hat{k}) = \alpha (x \hat{i} + y \hat{j} + z \hat{k}) \] 3. **Expanding the Left Side:** \[ (3x + 2y + 4z) \hat{i} + (2x + 0y + 2z) \hat{j} + (4x + 2y + 3z) \hat{k} = \alpha (x \hat{i} + y \hat{j} + z \hat{k}) \] 4. **Equating Coefficients:** - For \( \hat{i} \): \( 3x + 2y + 4z = \alpha x \) - For \( \hat{j} \): \( 2x + 0y + 2z = \alpha y \) - For \( \hat{k} \): \( 4x + 2y + 3z = \alpha z \) 5. **Rearranging the Equations:** - \( (3 - \alpha)x + 2y + 4z = 0 \) (1) - \( 2x + (0 - \alpha)y + 2z = 0 \) (2) - \( 4x + 2y + (3 - \alpha)z = 0 \) (3) 6. **Setting up the Coefficient Matrix:** The system can be represented as: \[ \begin{bmatrix} 3 - \alpha & 2 & 4 \\ 2 & -\alpha & 2 \\ 4 & 2 & 3 - \alpha \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 \] 7. **Finding the Determinant:** For non-trivial solutions, the determinant of the coefficient matrix must equal zero: \[ \text{Det} = \begin{vmatrix} 3 - \alpha & 2 & 4 \\ 2 & -\alpha & 2 \\ 4 & 2 & 3 - \alpha \end{vmatrix} = 0 \] 8. **Calculating the Determinant:** Expanding the determinant: \[ = (3 - \alpha)(-\alpha(3 - \alpha) - 4) - 2(2(3 - \alpha) - 8) + 4(4(-\alpha) - 8) \] Simplifying this leads to a polynomial in \( \alpha \). 9. **Solving the Polynomial:** After simplifying, we will find the roots of the polynomial which gives us the distinct values of \( \alpha \). 10. **Finding Distinct Values:** The roots of the polynomial will provide the distinct values of \( \alpha \). ### Final Result: After solving the polynomial, we find the distinct values of \( \alpha \) are \( -1 \) and \( 8 \). Therefore, there are **2 distinct values of \( \alpha \)**.
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

Find the sum of the vectors vec=hati-2hatj+hatk, vecb=-2hati+4 hatj+5hatk and vecc=hati-6hatj-7hatk

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let vec a=4hati+5hatj-hatk, vecb = hati -4hatj+5hatk and vec c=3hati+hatj-hatk . Find a vector vec d which is perpendicular to both vec c and vec b and vec d.vec a=21

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk . Find vec(PQ) and the direction cosines of vec(PQ) .

If vec r = 3 hati + 2 hatj - 5 hatk , vec a= 2 hati - hatj + hatk, vec b = hati + 3 hatj - 2hatk and vec c=-2 hati + hatj - 3 hatk " such that " hat r = x vec a +y vec b + z vec c then