Home
Class 12
MATHS
If veca, vecb, vec c are unit vectors, ...

If `veca, vecb, vec c` are unit vectors, then the value of `|veca-2vecb|^(2)+|vecb-2vec c|^(2)+|vec c-2 vec a|^(2)` does not exceed to : (a) 9 (b) 12 (c) 18 (d) 21

A

9

B

12

C

18

D

21

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \[ |\vec{a} - 2\vec{b}|^2 + |\vec{b} - 2\vec{c}|^2 + |\vec{c} - 2\vec{a}|^2 \] where \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are unit vectors. ### Step 1: Expand each term using the formula for the square of a vector's magnitude Using the identity \( |\vec{x} - \vec{y}|^2 = |\vec{x}|^2 + |\vec{y}|^2 - 2\vec{x} \cdot \vec{y} \), we can expand each term: 1. For \( |\vec{a} - 2\vec{b}|^2 \): \[ |\vec{a} - 2\vec{b}|^2 = |\vec{a}|^2 + |2\vec{b}|^2 - 2\vec{a} \cdot (2\vec{b}) = 1 + 4 - 4\vec{a} \cdot \vec{b} \] (since \(|\vec{a}|^2 = 1\) and \(|\vec{b}|^2 = 1\)) 2. For \( |\vec{b} - 2\vec{c}|^2 \): \[ |\vec{b} - 2\vec{c}|^2 = |\vec{b}|^2 + |2\vec{c}|^2 - 2\vec{b} \cdot (2\vec{c}) = 1 + 4 - 4\vec{b} \cdot \vec{c} \] 3. For \( |\vec{c} - 2\vec{a}|^2 \): \[ |\vec{c} - 2\vec{a}|^2 = |\vec{c}|^2 + |2\vec{a}|^2 - 2\vec{c} \cdot (2\vec{a}) = 1 + 4 - 4\vec{c} \cdot \vec{a} \] ### Step 2: Combine the expanded terms Now, we can combine all the expanded terms: \[ |\vec{a} - 2\vec{b}|^2 + |\vec{b} - 2\vec{c}|^2 + |\vec{c} - 2\vec{a}|^2 = (1 + 4 - 4\vec{a} \cdot \vec{b}) + (1 + 4 - 4\vec{b} \cdot \vec{c}) + (1 + 4 - 4\vec{c} \cdot \vec{a}) \] This simplifies to: \[ 3 + 12 - 4(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 15 - 4(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] ### Step 3: Analyze the dot product The dot products \(\vec{a} \cdot \vec{b}\), \(\vec{b} \cdot \vec{c}\), and \(\vec{c} \cdot \vec{a}\) can take values between -1 and 1. To find the maximum value of the expression, we consider the minimum possible value of the sum of the dot products: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \geq -\frac{3}{2} \] This leads to: \[ 15 - 4\left(-\frac{3}{2}\right) = 15 + 6 = 21 \] ### Conclusion Thus, the value of \[ |\vec{a} - 2\vec{b}|^2 + |\vec{b} - 2\vec{c}|^2 + |\vec{c} - 2\vec{a}|^2 \] does not exceed 21. The correct answer is (d) 21.
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b , vec c are unit vector, prove that | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2lt=9.

If veca , vec b all are unit vector, then the greatest value of |veca +vecb| + |veca-vecb| is

If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2+|vecc^2-veca^2|^2 does not exceed (A) 4 (B) 9 (C) 8 (D) 6

If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2 does not exceed (A) 4 (B) 9 (C) 8 (D) 6

If veca,vecb,vecc are coplanar vectors then find value of [veca-vecb+vec2c vecb-vec c+2veca veca+2vecb-vec c]

If vec a,vec b,vec c are three unit vectors,then the maximum value of (1)/(5)(|vec a+vec b-vec c|^(2)+|vec b+vec c-vec a|^(2)+|vec c+vec a-vec b|^(2)) is equal to:

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca , vecb are unit vectors such that |vec a+vecb|=-1 " then " |2veca -3vecb| =

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec a , vec b , and vec c are unit vectors such that vec a+ vec b+ vec c=0, then find the value of veca*vecb+vecb*vecc+vecc*veca