Home
Class 12
MATHS
The adjacent side vectors vec(OA) and ve...

The adjacent side vectors `vec(OA) and vec(OB)` of a rectangle OACB are `veca and vecb` respectively, where O is the origin . If `16|veca xx vecb|=3(|veca|+|vecb|)^(2) and theta` be the acute angle between the diagonals OC and AB then the value of `cos(theta/2)` is : (a)`(1)/(sqrt(2))` (b)`(1)/(2)` (c) `(1)/(sqrt(3))` (d)`(1)/(3)`

A

`(1)/(sqrt(2))`

B

`(1)/(2)`

C

`(1)/(sqrt(3))`

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given information and apply vector properties. Let's break it down step by step. ### Step 1: Understand the given equation We are given the equation: \[ 16 |\vec{a} \times \vec{b}| = 3 (|\vec{a}| + |\vec{b}|)^2 \] ### Step 2: Use the properties of the cross product Since \(\vec{a}\) and \(\vec{b}\) are adjacent sides of a rectangle, they are perpendicular. Thus, the magnitude of the cross product can be calculated as: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(90^\circ) = |\vec{a}| |\vec{b}| \] Substituting this into the equation gives: \[ 16 |\vec{a}| |\vec{b}| = 3 (|\vec{a}| + |\vec{b}|)^2 \] ### Step 3: Expand the right side Expanding the right side: \[ 3 (|\vec{a}| + |\vec{b}|)^2 = 3 (|\vec{a}|^2 + 2 |\vec{a}| |\vec{b}| + |\vec{b}|^2) \] Thus, the equation becomes: \[ 16 |\vec{a}| |\vec{b}| = 3 |\vec{a}|^2 + 6 |\vec{a}| |\vec{b}| + 3 |\vec{b}|^2 \] ### Step 4: Rearrange the equation Rearranging gives: \[ 16 |\vec{a}| |\vec{b}| - 6 |\vec{a}| |\vec{b}| = 3 |\vec{a}|^2 + 3 |\vec{b}|^2 \] This simplifies to: \[ 10 |\vec{a}| |\vec{b}| = 3 |\vec{a}|^2 + 3 |\vec{b}|^2 \] ### Step 5: Divide by \( |\vec{b}|^2 \) Let \( x = \frac{|\vec{a}|}{|\vec{b}|} \). Then we can write: \[ 10 x = 3 x^2 + 3 \] Rearranging gives: \[ 3 x^2 - 10 x + 3 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 3, b = -10, c = 3 \): \[ x = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 3 \cdot 3}}{2 \cdot 3} = \frac{10 \pm \sqrt{100 - 36}}{6} = \frac{10 \pm \sqrt{64}}{6} \] \[ x = \frac{10 \pm 8}{6} \] This gives us two solutions: 1. \( x = \frac{18}{6} = 3 \) 2. \( x = \frac{2}{6} = \frac{1}{3} \) ### Step 7: Determine \( \cos(\theta/2) \) Since \( \cos(\theta/2) = \frac{|\vec{a}|}{|\vec{b}|} \), we consider the valid solution: - \( \frac{|\vec{a}|}{|\vec{b}|} = \frac{1}{3} \) (valid since \( \cos(\theta/2) \) must be ≤ 1) Thus: \[ \cos(\theta/2) = \frac{1}{3} \] ### Final Answer The value of \( \cos(\theta/2) \) is: \[ \boxed{\frac{1}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Two adjacent sides OA and OB of a rectangle OACB are represented by vec a and vecb respectively, where o is origin. If 16|vec axxvecb| = 3 (|veca|+|vecb|)^2 and theta is the angle between the diagonals OC and AB, then the value(s) of tan(theta/2)

Two adjacent sides OA and OB of a rectangle OACB are represented by vec a and vecb respectively, where o is origin. If 16|vec axxvecb| = 3 |veca+vecb|^2 and theta is the angle between the diagonals OC and AB, then the value(s) of tan(theta/2)

If |vecaxxvecb|=1/sqrt3|veca.vecb| , find the angle between vec a and vecb

The angle between the vectors vecA and vecB is theta. The value of vecA(vecAxx vec B) is -

vecA and vecB are two vectors and theta is the angle between them, if |vecA xx vecB|=sqrt(3)(vecA.vecB) the value of theta is:-

IF |veca|=sqrt(3), |vecb|=2 and |veca-vecb|=3 find the angle between veca and vecb .

Let veca,vecb and vecc be the non zero vectors such that (vecaxxvecb)xxvecc=1/3 |vecb||vecc|veca. if theta is the acute angle between the vectors vecb and veca then theta equals (A) 1/3 (B) sqrt(2)/3 (C) 2/3 (D) 2sqrt(2)/3

Let veca,vecb and vecc be non-zero vectors such that no two are collinear and (vecaxxvecb)xxvecc=1/3|vecb||vecc|veca If theta is the acute angle between the vectors vecb and vecc then sin theta equals

If veca,vecb are two unit vectors such that |veca + vecb| = 2sqrt3 and |veca -vecb|=6 then the angle between veca and vecb , is

If veca , vecb and vec(c ) are there vectors such that veca + vecb = vec(C ) and further a^2 +b^2 =c ^2 find the angle between veca and vecb ?