Home
Class 12
MATHS
If vectors vec(AB) = -3hati+ 4hatk and v...

If vectors `vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk` are the sides of a `Delta ABC`, then the length of the median throught A is

A

`sqrt(288)`

B

`sqrt(72)`

C

`sqrt(33)`

D

`sqrt(18)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are the sides of a triangle ABC, then the length of the median through A is (A) sqrt(33) (B) sqrt(45) (C) sqrt(18) (D) sqrt(720

If the vectors vec(PQ)=-3hati+4hatj+4hatk and vec(PR)=5hati-2hatj+4hatk are the sides of a triangle PQR, then the length o the median through P is (A) sqrt(14) (B) sqrt(15) (C) sqrt(17) (D) sqrt(18)

The vector vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are sides of a triangle ABC. The length of the median through A is (A) sqrt(18) (B) sqrt(72) (C) sqrt(33) (D) sqrt(288)

If vecF = 3hati + 4hatj+5hatk and vecS=6hati +2hatj+5hatk , the find the work done.

If vecF=3hati-4hatj+5hatk " and " vecS=6hati+2hatj+5hatk , the find the work done.

Given vec alpha=3hati+hatj+2hatk and vec beta=hati-2hatj-4hatk are the position vectors of the points A and B Then the distance of the point hati+hatj+hatk from the plane passing through B and perpendicular to AB is (a) 5 (b) 10 (c) 15 (d) 20

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 hatj + hatj + 2 hatk, " then " | vec(CA)|=

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.