Home
Class 12
MATHS
If veca=2hati+lambda hatj+3hatk, vecb=3...

If `veca=2hati+lambda hatj+3hatk, vecb=3hati+3hatj+5hatk, vec c=lambda hati+2hatj+2hatk` are linearly dependent vectors, then the number of possible values of `lambda` is :

A

0

B

1

C

2

D

More than 2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of possible values of \( \lambda \) for which the vectors \( \vec{a} = 2\hat{i} + \lambda \hat{j} + 3\hat{k} \), \( \vec{b} = 3\hat{i} + 3\hat{j} + 5\hat{k} \), and \( \vec{c} = \lambda \hat{i} + 2\hat{j} + 2\hat{k} \) are linearly dependent, we need to set up the determinant of the matrix formed by these vectors and solve for \( \lambda \). ### Step-by-Step Solution: 1. **Form the Matrix**: We can represent the vectors as a matrix: \[ \begin{bmatrix} 2 & \lambda & 3 \\ 3 & 3 & 5 \\ \lambda & 2 & 2 \end{bmatrix} \] 2. **Set Up the Determinant**: For the vectors to be linearly dependent, the determinant of this matrix must equal zero: \[ \text{det} \begin{bmatrix} 2 & \lambda & 3 \\ 3 & 3 & 5 \\ \lambda & 2 & 2 \end{bmatrix} = 0 \] 3. **Calculate the Determinant**: We can expand the determinant using the first row: \[ = 2 \begin{vmatrix} 3 & 5 \\ 2 & 2 \end{vmatrix} - \lambda \begin{vmatrix} 3 & 5 \\ \lambda & 2 \end{vmatrix} + 3 \begin{vmatrix} 3 & 3 \\ \lambda & 2 \end{vmatrix} \] 4. **Calculate Each Minor**: - First minor: \[ \begin{vmatrix} 3 & 5 \\ 2 & 2 \end{vmatrix} = (3 \cdot 2) - (5 \cdot 2) = 6 - 10 = -4 \] - Second minor: \[ \begin{vmatrix} 3 & 5 \\ \lambda & 2 \end{vmatrix} = (3 \cdot 2) - (5 \cdot \lambda) = 6 - 5\lambda \] - Third minor: \[ \begin{vmatrix} 3 & 3 \\ \lambda & 2 \end{vmatrix} = (3 \cdot 2) - (3 \cdot \lambda) = 6 - 3\lambda \] 5. **Substitute Back**: \[ = 2(-4) - \lambda(6 - 5\lambda) + 3(6 - 3\lambda) \] \[ = -8 - 6\lambda + 5\lambda^2 + 18 - 9\lambda \] \[ = 5\lambda^2 - 15\lambda + 10 \] 6. **Set the Determinant to Zero**: \[ 5\lambda^2 - 15\lambda + 10 = 0 \] 7. **Simplify the Equation**: Divide the entire equation by 5: \[ \lambda^2 - 3\lambda + 2 = 0 \] 8. **Factor the Quadratic**: \[ (\lambda - 2)(\lambda - 1) = 0 \] 9. **Find the Values of \( \lambda \)**: Setting each factor to zero gives: \[ \lambda - 2 = 0 \quad \Rightarrow \quad \lambda = 2 \] \[ \lambda - 1 = 0 \quad \Rightarrow \quad \lambda = 1 \] 10. **Conclusion**: The possible values of \( \lambda \) are \( 1 \) and \( 2 \). Therefore, the number of possible values of \( \lambda \) is **2**.
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

Show that the vectors hati-3hatj+2hatk,2hati-4hatj-hatk and 3hati+2hatj-hatk and linearly independent.

If the vectors veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=lambdahati+hatj+muhatk are mutually orthogonal, then (lambda, mu)

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .