Home
Class 12
MATHS
The scalar triple product [veca+vecb-v...

The scalar triple product `[veca+vecb-vec c" "vecb+vec c -veca" "vec c+veca-vecb]` is equal to :

A

0

B

`[vecavecb vec c]`

C

`2[veca vecb vec c]`

D

`4[veca vecb vec c]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the scalar triple product \([ \vec{a} + \vec{b} - \vec{c}, \vec{b} + \vec{c} - \vec{a}, \vec{c} + \vec{a} - \vec{b} ]\), we can follow these steps: ### Step-by-Step Solution: 1. **Identify the Vectors**: Let: \[ \vec{x} = \vec{a} + \vec{b} - \vec{c} \] \[ \vec{y} = \vec{b} + \vec{c} - \vec{a} \] \[ \vec{z} = \vec{c} + \vec{a} - \vec{b} \] 2. **Write the Scalar Triple Product**: The scalar triple product is given by: \[ \vec{x} \cdot (\vec{y} \times \vec{z}) \] 3. **Calculate \(\vec{y} \times \vec{z}\)**: We need to compute \(\vec{y} \times \vec{z}\): \[ \vec{y} \times \vec{z} = (\vec{b} + \vec{c} - \vec{a}) \times (\vec{c} + \vec{a} - \vec{b}) \] Using the distributive property of the cross product: \[ = \vec{b} \times \vec{c} + \vec{b} \times \vec{a} - \vec{b} \times \vec{b} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a} - \vec{c} \times \vec{b} - \vec{a} \times \vec{c} - \vec{a} \times \vec{a} + \vec{a} \times \vec{b} \] Note that any vector crossed with itself is zero: \[ = \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b} \] 4. **Substitute Back into the Scalar Triple Product**: Now substitute \(\vec{y} \times \vec{z}\) back into the scalar triple product: \[ \vec{x} \cdot (\vec{y} \times \vec{z}) = (\vec{a} + \vec{b} - \vec{c}) \cdot (\vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b}) \] 5. **Distribute the Dot Product**: Distributing the dot product: \[ = (\vec{a} + \vec{b} - \vec{c}) \cdot (\vec{b} \times \vec{c}) + (\vec{a} + \vec{b} - \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{a} + \vec{b} - \vec{c}) \cdot (\vec{a} \times \vec{b}) \] 6. **Evaluate Each Term**: - The first term: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{c}) - \vec{c} \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (\vec{b} \times \vec{c}) + 0 - 0 = \vec{a} \cdot (\vec{b} \times \vec{c}) \] - The second term: \[ \vec{a} \cdot (\vec{c} \times \vec{a}) + \vec{b} \cdot (\vec{c} \times \vec{a}) - \vec{c} \cdot (\vec{c} \times \vec{a}) = 0 + \vec{b} \cdot (\vec{c} \times \vec{a}) - 0 = \vec{b} \cdot (\vec{c} \times \vec{a}) \] - The third term: \[ \vec{a} \cdot (\vec{a} \times \vec{b}) + \vec{b} \cdot (\vec{a} \times \vec{b}) - \vec{c} \cdot (\vec{a} \times \vec{b}) = 0 + 0 - \vec{c} \cdot (\vec{a} \times \vec{b}) = -\vec{c} \cdot (\vec{a} \times \vec{b}) \] 7. **Combine the Results**: Combining all the terms: \[ = \vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{c} \times \vec{a}) - \vec{c} \cdot (\vec{a} \times \vec{b}) \] 8. **Final Result**: The scalar triple product simplifies to: \[ = 2 \cdot (\vec{a} \cdot (\vec{b} \times \vec{c})) \] Therefore, the final answer is: \[ = 2 \cdot [\vec{a}, \vec{b}, \vec{c}] \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

The scalar triple product [(veca+vecb-vecc,vecb+vecc-veca,vecc+veca-vecb)] is equal to

veca.(vecbxxvecc) is called the scalar triple product of veca,vecb,vecc and is denoted by [veca vecb vecc]. If veca, vecb, vecc are cyclically permuted the vaslue of the scalar triple product remasin the same. In a scalar triple product, interchange of two vectors changes the sign of scalar triple product but not the magnitude. in scalar triple product the the position of the dot and cross can be interchanged privided the cyclic order of vectors is preserved. Also the scaslar triple product is ZERO if any two vectors are equal or parallel. (A) [vecb-vecc vecc-veca veca-vecb] (B) [veca vecb vecc] (C) 0 (D) none of these

If veca,vecb, vecc are unit coplanar vectors then the scalar triple product [2veca-vecb, 2vecb-c ,vec2c-veca] is equal to (A) 0 (B) 1 (C) -sqrt(3) (D) sqrt(3)

veca.(vecbxxvecc) is called the scalar triple product of veca,vecb,vecc and is denoted by [veca vecb vecc] . If veca,vecb,vecc are coplanar then [veca+vecb vecb+vecc vecc+veca ] = (A) 1 (B) -1 (C) 0 (D) none of these

If |veca|=|vecb| , then (veca+vecb).(veca-vecb) is equal to

If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then [vecaxxvecb vecbxxvecc veccxxveca] is equal to

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

Prove that : veca*(vecb+vec c)xx(veca+2vecb+3vec c)=[veca vecb vec c]

vec a , vec ba n d vec c are three non-coplanar ,non-zero vectors and vec r is any vector in space, then ( veca × vecb )×( vecr × vecc )+( vecb × vecc )×( vecr × veca )+( vecc × veca )×( vecr × vecb ) is equal to

If veca=hati+hatj+hatk, vecb=hati-hatj+hatk, vec c=hati+2hatj-hatk , then the value of |(veca*veca,veca*vecb, veca*vecc),(vecb*veca, vecb *vecb,vecb*vecc),(vec c*veca, vec c*vec b,vec c*vec c)| is equal to :