Home
Class 12
MATHS
The sine of angle formed by the lateral ...

The sine of angle formed by the lateral face ADC and plane of the base ABC of the terahedron ABCD, where `A=(3,-2,1), B=(3, 1,5), C=(4,0,3) and D=(1,0,0)`, is :

A

`(2)/(sqrt(29))`

B

`(5)/(sqrt(29))`

C

`(3sqrt(3))/(sqrt(29))`

D

`(-2)/(sqrt(29))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sine of the angle formed by the lateral face ADC and the plane of the base ABC of the tetrahedron ABCD, we will follow these steps: ### Step 1: Identify the Points The points of the tetrahedron are given as: - \( A = (3, -2, 1) \) - \( B = (3, 1, 5) \) - \( C = (4, 0, 3) \) - \( D = (1, 0, 0) \) ### Step 2: Find Vectors for the Planes We need to find two vectors for each of the planes. **For Plane ABC:** - Vector \( \overrightarrow{AB} = B - A = (3, 1, 5) - (3, -2, 1) = (0, 3, 4) \) - Vector \( \overrightarrow{AC} = C - A = (4, 0, 3) - (3, -2, 1) = (1, 2, 2) \) **For Plane ADC:** - Vector \( \overrightarrow{AD} = D - A = (1, 0, 0) - (3, -2, 1) = (-2, 2, -1) \) - Vector \( \overrightarrow{AC} \) is the same as before: \( (1, 2, 2) \) ### Step 3: Find Normal Vectors The normal vector of a plane can be found using the cross product of two vectors lying in that plane. **Normal Vector for Plane ABC (\( \overrightarrow{n_1} \)):** \[ \overrightarrow{n_1} = \overrightarrow{AB} \times \overrightarrow{AC} \] Calculating the cross product: \[ \overrightarrow{n_1} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 3 & 4 \\ 1 & 2 & 2 \end{vmatrix} = \hat{i}(3 \cdot 2 - 4 \cdot 2) - \hat{j}(0 \cdot 2 - 4 \cdot 1) + \hat{k}(0 \cdot 2 - 3 \cdot 1) \] \[ = \hat{i}(6 - 8) - \hat{j}(0 - 4) + \hat{k}(0 - 3) = -2\hat{i} + 4\hat{j} - 3\hat{k} \] Thus, \( \overrightarrow{n_1} = (-2, 4, -3) \). **Normal Vector for Plane ADC (\( \overrightarrow{n_2} \)):** \[ \overrightarrow{n_2} = \overrightarrow{AD} \times \overrightarrow{AC} \] Calculating the cross product: \[ \overrightarrow{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 2 & -1 \\ 1 & 2 & 2 \end{vmatrix} = \hat{i}(2 \cdot 2 - (-1) \cdot 2) - \hat{j}(-2 \cdot 2 - (-1) \cdot 1) + \hat{k}(-2 \cdot 2 - 2 \cdot 1) \] \[ = \hat{i}(4 + 2) - \hat{j}(-4 + 1) + \hat{k}(-4 - 2) = 6\hat{i} + 3\hat{j} - 6\hat{k} \] Thus, \( \overrightarrow{n_2} = (6, 3, -6) \). ### Step 4: Calculate the Cross Product of Normal Vectors Now we calculate \( \overrightarrow{n_1} \times \overrightarrow{n_2} \): \[ \overrightarrow{n_1} \times \overrightarrow{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 4 & -3 \\ 6 & 3 & -6 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i}(4 \cdot -6 - (-3) \cdot 3) - \hat{j}(-2 \cdot -6 - (-3) \cdot 6) + \hat{k}(-2 \cdot 3 - 4 \cdot 6) \] \[ = \hat{i}(-24 + 9) - \hat{j}(12 - 18) + \hat{k}(-6 - 24) = -15\hat{i} + 6\hat{j} - 30\hat{k} \] ### Step 5: Find Magnitudes Now we find the magnitudes of \( \overrightarrow{n_1} \), \( \overrightarrow{n_2} \), and \( \overrightarrow{n_1} \times \overrightarrow{n_2} \): \[ |\overrightarrow{n_1}| = \sqrt{(-2)^2 + 4^2 + (-3)^2} = \sqrt{4 + 16 + 9} = \sqrt{29} \] \[ |\overrightarrow{n_2}| = \sqrt{6^2 + 3^2 + (-6)^2} = \sqrt{36 + 9 + 36} = \sqrt{81} = 9 \] \[ |\overrightarrow{n_1} \times \overrightarrow{n_2}| = \sqrt{(-15)^2 + 6^2 + (-30)^2} = \sqrt{225 + 36 + 900} = \sqrt{1161} \] ### Step 6: Calculate Sine of the Angle Using the formula for sine of the angle between two planes: \[ \sin \theta = \frac{|\overrightarrow{n_1} \times \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} \] Substituting the values: \[ \sin \theta = \frac{\sqrt{1161}}{\sqrt{29} \cdot 9} \] ### Final Result Thus, the sine of the angle formed by the lateral face ADC and the plane of the base ABC is: \[ \sin \theta = \frac{\sqrt{1161}}{9\sqrt{29}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

The area of the quadrilateral ABCD where A (0,4,1) , B(2,3,-1), c (4,5,0)and D(2,6,2) is to :

Find the area of a rhombus ABCD whose vertices are A(3,0) ,B(4,5),C(-1,4) and D(-2,-1)

Check how the points A,B and C are situated where A(4,0),B(-1,-1),C(3,5) .

Show that the DeltaABC with vertices A ( 0,4, 1) , B ( 2, 3, -1) and C ( 4,5,0) is right angled.

Show that the quadrilateral ABCD with A(3,1) ,B(0,-2),C(1,1) and D(4,4) parallelogram.

Find the equation of the plane through the points A(3, 2, 0), B(1, 3, -1) and C(0, -2, 3).

Find the angles of a triangle whose vertices are A(0,-1,-2),B(3,1,4) and C (5,7,1).

Taking 0.5 cm as 1 unit, plot the following points on the graph paper A(1,3), B(-3,-1),C(1,-4),D(-2,3). E(0,-8) and F(1,0).

Find the angles of a triangle whose vertices are A(0,\ -1,\ -2),\ B(3,\ 1,\ 4)a n d\ C(5,\ 7,\ 1)dot

Find a unit vector perpendicular to the plane ABC, where the coordinates of A ,\ B ,\ a n d\ C are A(3,\ -1,\ 2),\ B(1,\ -1,\ -3)a n d\ C(4,\ -3,\ 1)dot