Home
Class 12
MATHS
If hata, hatb are unit vectors and vec c...

If `hata, hatb` are unit vectors and `vec c` is such that `vec c=veca xx vec c +vecb`, then the maximum value of `[veca vecb vec c]` is :

A

1

B

`(1)/(2)`

C

2

D

`(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the scalar triple product \([ \vec{a}, \vec{b}, \vec{c} ]\) given that \(\vec{c} = \vec{a} \times \vec{c} + \vec{b}\) and that \(\vec{a}\) and \(\vec{b}\) are unit vectors. ### Step-by-Step Solution: 1. **Understanding the Given Equation:** We start with the equation: \[ \vec{c} = \vec{a} \times \vec{c} + \vec{b} \] 2. **Taking the Dot Product with \(\vec{a}\):** We take the dot product of both sides with \(\vec{a}\): \[ \vec{a} \cdot \vec{c} = \vec{a} \cdot (\vec{a} \times \vec{c}) + \vec{a} \cdot \vec{b} \] 3. **Using the Property of the Cross Product:** The term \(\vec{a} \cdot (\vec{a} \times \vec{c})\) is zero because the dot product of a vector with a vector perpendicular to it is zero: \[ \vec{a} \cdot \vec{c} = 0 + \vec{a} \cdot \vec{b} \] Thus, we have: \[ \vec{a} \cdot \vec{c} = \vec{a} \cdot \vec{b} \] 4. **Finding the Scalar Triple Product:** The scalar triple product \([ \vec{a}, \vec{b}, \vec{c} ]\) can be expressed as: \[ [ \vec{a}, \vec{b}, \vec{c} ] = \vec{a} \cdot (\vec{b} \times \vec{c}) \] 5. **Substituting for \(\vec{c}\):** We substitute \(\vec{c}\) into the scalar triple product: \[ [ \vec{a}, \vec{b}, \vec{c} ] = \vec{a} \cdot \left( \vec{b} \times (\vec{a} \times \vec{c} + \vec{b}) \right) \] 6. **Using the Vector Triple Product Identity:** We can use the vector triple product identity: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] Applying this, we get: \[ [ \vec{a}, \vec{b}, \vec{c} ] = \vec{a} \cdot \left( \vec{b} \times \vec{b} + \vec{b} \times (\vec{a} \times \vec{c}) \right) \] The first term is zero since \(\vec{b} \times \vec{b} = 0\): \[ = \vec{a} \cdot \left( \vec{b} \times (\vec{a} \times \vec{c}) \right) \] 7. **Simplifying Further:** Using the identity again: \[ = \vec{a} \cdot \left( (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \right) \] Substitute \(\vec{a} \cdot \vec{c} = \vec{a} \cdot \vec{b}\): \[ = (\vec{a} \cdot \vec{b}) \vec{a} \cdot \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] 8. **Finding Maximum Value:** Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, we have \(|\vec{a}| = 1\) and \(|\vec{b}| = 1\). Therefore, the maximum value of \(\vec{a} \cdot \vec{b}\) is 1 (when \(\vec{a}\) and \(\vec{b}\) are in the same direction). 9. **Conclusion:** Thus, the maximum value of the scalar triple product \([ \vec{a}, \vec{b}, \vec{c} ]\) is: \[ \text{Maximum value} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If vec a and vec b are unit vectors and vec c is such that vec c is such that vec c = vec c = vec a xx vec c + vec b then maximum value of [veca vec b vec c] is

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

Let veca = hati - 2 hatj + 2hatk and vec b = 2 hati - hatj + hatk be two vectors. If vec c is a vector such that vecb xx vec c = vec b xx vec a and vec c vec a = 1 , then vec c vec b is equal to :

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b+ vec c= vec0 find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot'

If vec a , vec b , and vec c are unit vectors such that vec a+ vec b+ vec c=0, then find the value of veca*vecb+vecb*vecc+vecc*veca

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c=0. then find the value of vec a. vec b+ vec b.vec c+ vec c. vec a

If veca , vec b all are unit vector, then the greatest value of |veca +vecb| + |veca-vecb| is