Home
Class 12
MATHS
If (veca xx vecb)xx vec c=veca xx (vecb...

If `(veca xx vecb)xx vec c=veca xx (vecb xx vec c)`, where `veca, vecb and vec c` are any three vectors such that `veca*vecb ne 0, vecb*vec c ne 0`, then `veca and vec c` are :

A

Inclined at an angle of `(pi)/(3)`

B

Inclined at an angle of `(pi)/(6)`

C

Perpendicular

D

Parallel

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vector equation: \[ (\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c}) \] where \(\vec{a}, \vec{b}, \vec{c}\) are vectors such that \(\vec{a} \cdot \vec{b} \neq 0\) and \(\vec{b} \cdot \vec{c} \neq 0\). ### Step 1: Use the Vector Triple Product Identity We can apply the vector triple product identity, which states that: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Using this identity, we can rewrite both sides of the equation. ### Step 2: Rewrite the Left Side For the left side \((\vec{a} \times \vec{b}) \times \vec{c}\): \[ (\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a} \] ### Step 3: Rewrite the Right Side For the right side \(\vec{a} \times (\vec{b} \times \vec{c})\): \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] ### Step 4: Set the Two Sides Equal Now we set the two expressions equal to each other: \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] ### Step 5: Simplify the Equation By simplifying, we can cancel \((\vec{a} \cdot \vec{c}) \vec{b}\) from both sides: \[ - (\vec{b} \cdot \vec{c}) \vec{a} = - (\vec{a} \cdot \vec{b}) \vec{c} \] This leads to: \[ (\vec{b} \cdot \vec{c}) \vec{a} = (\vec{a} \cdot \vec{b}) \vec{c} \] ### Step 6: Analyze the Result From the equation \((\vec{b} \cdot \vec{c}) \vec{a} = (\vec{a} \cdot \vec{b}) \vec{c}\), we can conclude that \(\vec{a}\) and \(\vec{c}\) are scalar multiples of each other, which implies that they are parallel. ### Conclusion Thus, we can conclude that: \(\vec{a}\) and \(\vec{c}\) are parallel vectors.
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for some scalar k prove that veca+vecc = kvecb .

If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are coplanar vectors, then for some scalar k prove that veca+vecc = kbvecb .

If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

If vec a , vec b , vec c are any three noncoplanar vector, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

Solve for vec x,vecx xx vec b=veca , where veca,vecb are two given vectors such that veca is perpendicular to vecb .

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

Angle between vectors veca and vecb " where " veca,vecb and vecc are unit vectors satisfying veca + vecb + sqrt3 vecc = vec0 is

If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc , we may have