Home
Class 12
MATHS
If vecr=a(vecm xx vecn)+b(vecn xx vecI)...

If `vecr=a(vecm xx vecn)+b(vecn xx vecI)+c(vecI xx vecm) and [vecI vecm vecn]=4," find "(a+b+c)/(vecr*(vecI+vecm+vecn))` :

A

`(1)/(4)`

B

`(1)/(2)`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a+b+c)/( \vec{r} \cdot (\vec{i} + \vec{m} + \vec{n}))\) given that: \[ \vec{r} = a(\vec{m} \times \vec{n}) + b(\vec{n} \times \vec{i}) + c(\vec{i} \times \vec{m}) \] and the scalar triple product \([\vec{i}, \vec{m}, \vec{n}] = 4\). ### Step 1: Write down the scalar triple product The scalar triple product \([\vec{i}, \vec{m}, \vec{n}]\) can be expressed as: \[ \vec{i} \cdot (\vec{m} \times \vec{n}) = 4 \] This is our first equation. ### Step 2: Take the dot product of \(\vec{r}\) with \(\vec{i}\) Now, we take the dot product of both sides of the equation for \(\vec{r}\) with \(\vec{i}\): \[ \vec{r} \cdot \vec{i} = a(\vec{m} \times \vec{n}) \cdot \vec{i} + b(\vec{n} \times \vec{i}) \cdot \vec{i} + c(\vec{i} \times \vec{m}) \cdot \vec{i} \] ### Step 3: Simplify the dot products Since \((\vec{n} \times \vec{i})\) and \((\vec{i} \times \vec{m})\) are perpendicular to \(\vec{i}\), their dot products with \(\vec{i}\) will be zero: \[ \vec{r} \cdot \vec{i} = a(\vec{m} \times \vec{n}) \cdot \vec{i} \] Using the first equation, we can substitute: \[ \vec{r} \cdot \vec{i} = a \cdot 4 \] ### Step 4: Take the dot product of \(\vec{r}\) with \(\vec{m}\) Next, we take the dot product of \(\vec{r}\) with \(\vec{m}\): \[ \vec{r} \cdot \vec{m} = a(\vec{m} \times \vec{n}) \cdot \vec{m} + b(\vec{n} \times \vec{i}) \cdot \vec{m} + c(\vec{i} \times \vec{m}) \cdot \vec{m} \] Again, \((\vec{m} \times \vec{n}) \cdot \vec{m}\) and \((\vec{i} \times \vec{m}) \cdot \vec{m}\) will be zero: \[ \vec{r} \cdot \vec{m} = b(\vec{n} \times \vec{i}) \cdot \vec{m} \] ### Step 5: Take the dot product of \(\vec{r}\) with \(\vec{n}\) Now, we take the dot product of \(\vec{r}\) with \(\vec{n}\): \[ \vec{r} \cdot \vec{n} = a(\vec{m} \times \vec{n}) \cdot \vec{n} + b(\vec{n} \times \vec{i}) \cdot \vec{n} + c(\vec{i} \times \vec{m}) \cdot \vec{n} \] Again, \((\vec{m} \times \vec{n}) \cdot \vec{n}\) and \((\vec{n} \times \vec{i}) \cdot \vec{n}\) will be zero: \[ \vec{r} \cdot \vec{n} = c(\vec{i} \times \vec{m}) \cdot \vec{n} \] ### Step 6: Combine the results Now we can combine the results from the dot products: \[ \vec{r} \cdot \vec{i} + \vec{r} \cdot \vec{m} + \vec{r} \cdot \vec{n} = 4a + 4b + 4c = 4(a + b + c) \] ### Step 7: Substitute back into the desired expression Now, we substitute this into the expression we want to evaluate: \[ \frac{a + b + c}{\vec{r} \cdot (\vec{i} + \vec{m} + \vec{n})} = \frac{a + b + c}{4(a + b + c)} \] ### Step 8: Simplify the expression This simplifies to: \[ \frac{1}{4} \] ### Final Answer Thus, the value of \(\frac{a + b + c}{\vec{r} \cdot (\vec{i} + \vec{m} + \vec{n})}\) is: \[ \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Let vecr be a unit vector satisfying vecr xx veca = vecb, " where " |veca|= sqrt3 and |vecb| = sqrt2 , then (a)vecr= 2/3(veca+ veca xx vecb) (b) vecr= 1/3(veca+ veca xx vecb) (c) vecr= 2/3(veca- veca xx vecb) (d) vecr= 1/3(-veca+ veca xx vecb)

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

If veca,vecb and vecc are three non coplanar vectors and vecr is any vector in space, then (vecxxvecb),(vecrxxvecc)+(vecb xxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb)= (A) [veca vecb vecc] (B) 2[veca vecb vecc]vecr (C) 3[veca vecb vecc]vecr (D) 4[veca vecb vecc]vecr

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

If vecl,vecm,vecn are three non coplanar vectors prove that [vec vecm vecn](vecaxxvecb) =|(vec1.veca, vec1.vecb, vec1),(vecm.veca, vecm.vecb, vecm),(vecn.veca, vecn.vecb, vecn)|

If vecl,vecm,vecn are three non coplanar vectors prove that [vecl vecm vecn](vecaxxvecb) =|(vec1.veca, vec1.vecb, vec1),(vecm.veca, vecm.vecb, vecm),(vecn.veca, vecn.vecb, vecn)|

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecb and vecr.veca =0 then find the value of vecr .vecb .

Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a) , where veca, vecb, vec c are non-zero and non-coplanar vectors. If vecr is orthogonal to veca+vecb+vec c , then find the minimum value of (4)/(pi^(2))(x^(2)+y^(2)) .

If vecx xxvecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 and vecy.vecz=1 then find x,y,z in terms of veca,vecb and gamma .