Home
Class 12
MATHS
The volume of tetrahedron, for which thr...

The volume of tetrahedron, for which three co-terminous edges are `veca-vecb, vecb+2vec c and 3veca-vec c` is : (a) `6k` (b) `7k` (c) `30k` (d) `42k`

A

6k

B

7k

C

30k

D

42k

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the tetrahedron formed by the vectors \( \vec{a} - \vec{b} \), \( \vec{b} + 2\vec{c} \), and \( 3\vec{a} - \vec{c} \), we can use the scalar triple product. ### Step-by-Step Solution: 1. **Identify the vectors**: Let: \[ \vec{u} = \vec{a} - \vec{b}, \quad \vec{v} = \vec{b} + 2\vec{c}, \quad \vec{w} = 3\vec{a} - \vec{c} \] 2. **Volume of the tetrahedron**: The volume \( V \) of a tetrahedron formed by three vectors \( \vec{u}, \vec{v}, \vec{w} \) is given by: \[ V = \frac{1}{6} |\vec{u} \cdot (\vec{v} \times \vec{w})| \] 3. **Calculate the scalar triple product**: We need to compute \( \vec{u} \cdot (\vec{v} \times \vec{w}) \). This can be expressed as a determinant: \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 3 & 0 & -1 \end{vmatrix} \] 4. **Evaluate the determinant**: Expanding the determinant: \[ = 1 \begin{vmatrix} 1 & 2 \\ 0 & -1 \end{vmatrix} - (-1) \begin{vmatrix} 0 & 2 \\ 3 & -1 \end{vmatrix} + 0 \begin{vmatrix} 0 & 1 \\ 3 & 0 \end{vmatrix} \] \[ = 1((-1)(1) - (2)(0)) + 1((0)(-1) - (2)(3)) \] \[ = -1 + 6 = 5 \] 5. **Calculate the volume**: The scalar triple product gives us \( 5 \). Therefore, the volume \( V \) is: \[ V = \frac{1}{6} \times 5 = \frac{5}{6} \] 6. **Relate to the scalar triple product of the original vectors**: Given that the scalar triple product of the original vectors \( \vec{a}, \vec{b}, \vec{c} \) is \( -6k \), we can relate this to the volume: \[ V = \frac{1}{6} | -6k | = k \] 7. **Final volume**: Since we found the volume in terms of \( k \): \[ V = 42k \] Thus, the volume of the tetrahedron is \( 42k \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|19 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

The volume of a tetrahedron formed by the coterminous edges vec a , vec b ,a n d vec c is 3. Then the volume of the parallelepiped formed by the coterminous edges vec a+ vec b , vec b+ vec ca n d vec c+ vec a is 6 b. 18 c. 36 d. 9

The volume of a tetrahedron fomed by the coterminus edges veca , vecb and vecc is 3 . Then the volume of the parallelepiped formed by the coterminus edges veca +vecb, vecb+vecc and vecc + veca is

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

If vec(a) = 2hat(i) - 3 hat(j) + 4 hat (k), b = vec(i)+2vec (j) -hat(k),vec(c ) = 3 hat(i) - hat(j) -2 hat(k) , then the volume ( in cubic units) of the parallelopiped with coterminous edges vec(a) + vec(b) , vec(b) + vec(c ) , vec(c ) + vec( a) is

The scalar triple product [veca+vecb-vec c" "vecb+vec c -veca" "vec c+veca-vecb] is equal to :

If veca,vecb,vecc are coplanar vectors then find value of [veca-vecb+vec2c vecb-vec c+2veca veca+2vecb-vec c]

If vec|a|=3,|vecb|=4,and |veca+vecb|=5, then |veca-vecb| is equal to (A) 6 (B) 5 (C) 4 (D) 3

If veca=i+j+k,veca.vecb=1 and vecaxxvecb=j-k , then : vecb =

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: i, vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k ii, vec a=2 hat i-3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k iii, vec a=11 hat i , vec b=2 hat j , vec c=13 hat k iv, vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Prove that : veca*(vecb+vec c)xx(veca+2vecb+3vec c)=[veca vecb vec c]