Home
Class 12
MATHS
If veca=hati+6hatj+3hatk, vecb=3hati+2ha...

If `veca=hati+6hatj+3hatk, vecb=3hati+2hatj+hatk and vec c=(alpha+1)hati+(beta-1)hatj+hatk` are linearly dependent vectors and `|vec c|=sqrt(6)`, then the possible value(s) of `(alpha+beta)` can be : (a) 1 (b) 2 (c) 3 (d) 4

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the possible values of \( \alpha + \beta \) given that the vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \) are linearly dependent and the magnitude of \( \vec{c} \) is \( \sqrt{6} \). ### Step 1: Write down the vectors Given: \[ \vec{a} = \hat{i} + 6\hat{j} + 3\hat{k} \] \[ \vec{b} = 3\hat{i} + 2\hat{j} + \hat{k} \] \[ \vec{c} = (\alpha + 1)\hat{i} + (\beta - 1)\hat{j} + \hat{k} \] ### Step 2: Set up the linear dependence condition Since the vectors are linearly dependent, we can express \( \vec{c} \) as a linear combination of \( \vec{a} \) and \( \vec{b} \): \[ \vec{c} = l \vec{a} + m \vec{b} \] Expanding this, we have: \[ (\alpha + 1)\hat{i} + (\beta - 1)\hat{j} + \hat{k} = l(\hat{i} + 6\hat{j} + 3\hat{k}) + m(3\hat{i} + 2\hat{j} + \hat{k}) \] ### Step 3: Equate coefficients From the equation above, we can equate the coefficients of \( \hat{i}, \hat{j}, \) and \( \hat{k} \): 1. Coefficient of \( \hat{i} \): \[ \alpha + 1 = l + 3m \tag{1} \] 2. Coefficient of \( \hat{j} \): \[ \beta - 1 = 6l + 2m \tag{2} \] 3. Coefficient of \( \hat{k} \): \[ 1 = 3l + m \tag{3} \] ### Step 4: Solve the equations From equation (3), we can express \( m \) in terms of \( l \): \[ m = 1 - 3l \tag{4} \] Substituting equation (4) into equation (1): \[ \alpha + 1 = l + 3(1 - 3l) \] \[ \alpha + 1 = l + 3 - 9l \] \[ \alpha + 1 = 3 - 8l \] \[ \alpha = 2 - 8l \tag{5} \] Now substituting equation (4) into equation (2): \[ \beta - 1 = 6l + 2(1 - 3l) \] \[ \beta - 1 = 6l + 2 - 6l \] \[ \beta - 1 = 2 \] \[ \beta = 3 \tag{6} \] ### Step 5: Find \( \alpha \) Now substituting equation (6) into equation (5): \[ \alpha = 2 - 8l \] We need to find \( l \) now. ### Step 6: Use the magnitude condition We know that the magnitude of \( \vec{c} \) is \( \sqrt{6} \): \[ |\vec{c}| = \sqrt{(\alpha + 1)^2 + (\beta - 1)^2 + 1^2} = \sqrt{6} \] Squaring both sides: \[ (\alpha + 1)^2 + (\beta - 1)^2 + 1 = 6 \] Substituting \( \beta = 3 \): \[ (\alpha + 1)^2 + (3 - 1)^2 + 1 = 6 \] \[ (\alpha + 1)^2 + 4 + 1 = 6 \] \[ (\alpha + 1)^2 + 5 = 6 \] \[ (\alpha + 1)^2 = 1 \] Taking square roots: \[ \alpha + 1 = 1 \quad \text{or} \quad \alpha + 1 = -1 \] This gives: 1. \( \alpha = 0 \) 2. \( \alpha = -2 \) ### Step 7: Calculate \( \alpha + \beta \) Now we can find \( \alpha + \beta \): 1. If \( \alpha = 0 \): \[ \alpha + \beta = 0 + 3 = 3 \] 2. If \( \alpha = -2 \): \[ \alpha + \beta = -2 + 3 = 1 \] ### Conclusion The possible values of \( \alpha + \beta \) are \( 3 \) and \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If veca=hati+hatj+hatk, vecb=4hati+3hatj+4hatk and vecc=hati+alphahatj+betahatk are linearly dependent vectors and |vecc|=sqrt(3) then:

If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

If veca=2hati+lambda hatj+3hatk, vecb=3hati+3hatj+5hatk, vec c=lambda hati+2hatj+2hatk are linearly dependent vectors, then the number of possible values of lambda is :

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca=2hati+lambda hatj+3hatk, vecb=3hati+3hatj+5hatk, vec c=lambda hati+2hatj+2hatk are linearly dependent vectors, then the number of possible values of lambda is : i) 0 ii)1 iii)2 iv)More than 2

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

VK JAISWAL ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-2 : One or More than One Answer is/are Correct
  1. If equation of three lines are : (x)/(1)=(y)/(2)=(z)/(3), (x)/(2)=...

    Text Solution

    |

  2. If veca=hati+6hatj+3hatk, vecb=3hati+2hatj+hatk and vec c=(alpha+1)hat...

    Text Solution

    |

  3. Consider the lines : L(1): (x-2)/(1)=(y-1)/(7)=(z+2)/(-5) L(2):x-4...

    Text Solution

    |

  4. Let hata, hatb and hatc be three unit vectors such that hata=hatb+(h...

    Text Solution

    |

  5. The value(s) of mu for which the straight lines vecr=3hati-2hatj-4hatk...

    Text Solution

    |

  6. If hati xx [ (veca-hatj) xxhati]+ hatj xx [(veca - hatk)xx hatj] +hatk...

    Text Solution

    |

  7. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to (a)[veca...

    Text Solution

    |

  8. If veca,vecb,vecc & vecd are position vector of point A,B,C and D resp...

    Text Solution

    |

  9. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  10. Consider the lines x=y=z and line 2x+y+z-1=0=3x+y+2z-2, then

    Text Solution

    |

  11. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  12. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  13. Let a be a real number and vec alpha = hati +2hatj, vec beta=2hati+a h...

    Text Solution

    |

  14. The volume of a right triangular prism ABCA(1)B(1)C(1) is equal to 3 c...

    Text Solution

    |

  15. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  16. If a line has a vector equation, vecr=2hati +6hatj+lambda(hati-3hatj) ...

    Text Solution

    |

  17. Let M,N, P and Q be the mid points of the edges AB, CD, AC and BD resp...

    Text Solution

    |

  18. The solution vectors vecr of the equation vecr xx hati=hatj+hatk and v...

    Text Solution

    |

  19. The lines with vector equations are, vecr(1)=3hati+6hatj+lambda(-4hat...

    Text Solution

    |