Home
Class 12
MATHS
The value(s) of mu for which the straigh...

The value(s) of `mu` for which the straight lines `vecr=3hati-2hatj-4hatk+lambda_(1)(hati-hatj+mu hatk)` and `vec r=5hati-2hatj+hatk+lambda_(2)(hati+mu hatj+2hatk)` are coplanar is/are :

A

`(5+sqrt(33))/(4)`

B

`(-5+sqrt(33))/(4)`

C

`(5-sqrt(33))/(4)`

D

`(-5-sqrt(33))/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of `mu` for which the given straight lines are coplanar, we will follow these steps: ### Step 1: Identify the position and direction vectors of the lines The first line is given by: \[ \vec{r_1} = 3\hat{i} - 2\hat{j} - 4\hat{k} + \lambda_1(\hat{i} - \hat{j} + \mu \hat{k}) \] From this, we can identify: - Position vector \( \vec{l_1} = 3\hat{i} - 2\hat{j} - 4\hat{k} \) - Direction vector \( \vec{m_1} = \hat{i} - \hat{j} + \mu \hat{k} \) The second line is given by: \[ \vec{r_2} = 5\hat{i} - 2\hat{j} + \hat{k} + \lambda_2(\hat{i} + \mu \hat{j} + 2\hat{k}) \] From this, we can identify: - Position vector \( \vec{l_2} = 5\hat{i} - 2\hat{j} + \hat{k} \) - Direction vector \( \vec{m_2} = \hat{i} + \mu \hat{j} + 2\hat{k} \) ### Step 2: Find the vector \( \vec{l_2} - \vec{l_1} \) Calculating \( \vec{l_2} - \vec{l_1} \): \[ \vec{l_2} - \vec{l_1} = (5\hat{i} - 2\hat{j} + \hat{k}) - (3\hat{i} - 2\hat{j} - 4\hat{k}) = (5 - 3)\hat{i} + (0)\hat{j} + (1 + 4)\hat{k} = 2\hat{i} + 5\hat{k} \] ### Step 3: Compute the cross product \( \vec{m_1} \times \vec{m_2} \) Using the determinant method to find \( \vec{m_1} \times \vec{m_2} \): \[ \vec{m_1} = \begin{pmatrix} 1 \\ -1 \\ \mu \end{pmatrix}, \quad \vec{m_2} = \begin{pmatrix} 1 \\ \mu \\ 2 \end{pmatrix} \] The cross product is given by the determinant: \[ \vec{m_1} \times \vec{m_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & \mu \\ 1 & \mu & 2 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i}((-1)(2) - (\mu)(\mu)) - \hat{j}((1)(2) - (1)(\mu)) + \hat{k}((1)(\mu) - (1)(-1)) \] \[ = \hat{i}(-2 - \mu^2) - \hat{j}(2 - \mu) + \hat{k}(\mu + 1) \] Thus, we have: \[ \vec{m_1} \times \vec{m_2} = (-\mu^2 - 2)\hat{i} + (\mu - 2)\hat{j} + (\mu + 1)\hat{k} \] ### Step 4: Use the coplanarity condition The lines are coplanar if: \[ (\vec{l_2} - \vec{l_1}) \cdot (\vec{m_1} \times \vec{m_2}) = 0 \] Substituting the values: \[ (2\hat{i} + 5\hat{k}) \cdot ((-\mu^2 - 2)\hat{i} + (\mu - 2)\hat{j} + (\mu + 1)\hat{k}) = 0 \] Calculating the dot product: \[ 2(-\mu^2 - 2) + 5(\mu + 1) = 0 \] Expanding this: \[ -2\mu^2 - 4 + 5\mu + 5 = 0 \] Rearranging gives: \[ 2\mu^2 - 5\mu - 1 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula \( \mu = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2, b = -5, c = -1 \): \[ \mu = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] \[ = \frac{5 \pm \sqrt{25 + 8}}{4} = \frac{5 \pm \sqrt{33}}{4} \] ### Final Result The values of \( \mu \) for which the lines are coplanar are: \[ \mu = \frac{5 + \sqrt{33}}{4}, \quad \mu = \frac{5 - \sqrt{33}}{4} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines vecr=3hati+5hatj+7hatk+lamda(hati-2hatj+hatk) and vecr=-hati+hatj-hatk+mu(2hati-6hatj+hatk)

Find the shortest distance between the lines vecr=(hati+2hatj+hatk)+lamda(2hati+hatj+2hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk) .

Find the shortest distance between the lines vecr=(hatii+2hatj+hatk)+lamda(2hati+hatj=2hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk) .

The lines vecr=(2hati-3hatj+7hatk)+lamda(2hati+phatj+5hatk) and vecr=(hati+2hatj+3hatk)+mu(3hati+phatj+phatk) are perpendicular it p=

Find the shortest distance vecr=hati+2hatj+3hatk+lambda(hati-3hatj+2hatk)and vecr= 4hati+5hatj+6hatk+mu(2hati+3hatj+hatk) .

Find the shortest distance between lines vecr = 6hati+2hatj+2hatk+lambda(hati-2hatj+2hatk) and vecr = -4hati-hatk +mu(3hati-2hatj-2hatk) .

Find the angle between the lines vecr=3hati-2hatj+6hatk+lamda(2hati+hatj+2hatk) and vecr=(2hatj-5hatk)+mu(6hati+3hatj+2hatk) .

Find the angle between the lines vecr=3hati-2hatj+6hatk+lamda(2hati+hatj+2hatk) and vecr=(2hatj-5hatk)+mu(6hati+3hatj+2hatk) .

Find the angle between the line vecr=(hati+2hatj-hatk)+lamda(hati-hatj+hatk) and the plane ver.(2hati-hatj+hatk)=4

Find the shrotest distance between the lines vecr = hati+hatj+ lambda(2hati-hatj+hatk) and vecr= 2hati+hatj-hatk+mu(2hati-hatj+hatk) .

VK JAISWAL ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-2 : One or More than One Answer is/are Correct
  1. If equation of three lines are : (x)/(1)=(y)/(2)=(z)/(3), (x)/(2)=...

    Text Solution

    |

  2. If veca=hati+6hatj+3hatk, vecb=3hati+2hatj+hatk and vec c=(alpha+1)hat...

    Text Solution

    |

  3. Consider the lines : L(1): (x-2)/(1)=(y-1)/(7)=(z+2)/(-5) L(2):x-4...

    Text Solution

    |

  4. Let hata, hatb and hatc be three unit vectors such that hata=hatb+(h...

    Text Solution

    |

  5. The value(s) of mu for which the straight lines vecr=3hati-2hatj-4hatk...

    Text Solution

    |

  6. If hati xx [ (veca-hatj) xxhati]+ hatj xx [(veca - hatk)xx hatj] +hatk...

    Text Solution

    |

  7. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to (a)[veca...

    Text Solution

    |

  8. If veca,vecb,vecc & vecd are position vector of point A,B,C and D resp...

    Text Solution

    |

  9. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  10. Consider the lines x=y=z and line 2x+y+z-1=0=3x+y+2z-2, then

    Text Solution

    |

  11. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  12. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  13. Let a be a real number and vec alpha = hati +2hatj, vec beta=2hati+a h...

    Text Solution

    |

  14. The volume of a right triangular prism ABCA(1)B(1)C(1) is equal to 3 c...

    Text Solution

    |

  15. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  16. If a line has a vector equation, vecr=2hati +6hatj+lambda(hati-3hatj) ...

    Text Solution

    |

  17. Let M,N, P and Q be the mid points of the edges AB, CD, AC and BD resp...

    Text Solution

    |

  18. The solution vectors vecr of the equation vecr xx hati=hatj+hatk and v...

    Text Solution

    |

  19. The lines with vector equations are, vecr(1)=3hati+6hatj+lambda(-4hat...

    Text Solution

    |