Home
Class 12
MATHS
If hati xx [ (veca-hatj) xxhati]+ hatj x...

If `hati xx [ (veca-hatj) xxhati]+ hatj xx [(veca - hatk)xx hatj] +hatk xx [(veca-hati) xx hatk]=0 and veca=xhati+y hatj+z hatk`, then :

A

`x+y=1`

B

`y+z=(1)/(2)`

C

`x+z=1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the expression step by step. The expression is: \[ \hat{i} \times (\vec{a} - \hat{j}) \times \hat{i} + \hat{j} \times (\vec{a} - \hat{k}) \times \hat{j} + \hat{k} \times (\vec{a} - \hat{i}) \times \hat{k} = 0 \] where \(\vec{a} = x \hat{i} + y \hat{j} + z \hat{k}\). ### Step 1: Expand the first term The first term is: \[ \hat{i} \times (\vec{a} - \hat{j}) \times \hat{i} \] Substituting \(\vec{a}\): \[ = \hat{i} \times ((x \hat{i} + y \hat{j} + z \hat{k}) - \hat{j}) \times \hat{i} \] This simplifies to: \[ = \hat{i} \times (x \hat{i} + (y - 1) \hat{j} + z \hat{k}) \times \hat{i} \] ### Step 2: Calculate the cross product Using the properties of cross products: \[ \hat{i} \times \hat{i} = 0 \] \[ \hat{i} \times \hat{j} = \hat{k} \] \[ \hat{i} \times \hat{k} = -\hat{j} \] We can calculate: \[ = \hat{i} \times ((y - 1) \hat{j}) + \hat{i} \times (z \hat{k}) = (y - 1)(\hat{i} \times \hat{j}) + z(\hat{i} \times \hat{k}) = (y - 1) \hat{k} - z \hat{j} \] So the first term simplifies to: \[ (y - 1) \hat{k} - z \hat{j} \] ### Step 3: Expand the second term The second term is: \[ \hat{j} \times (\vec{a} - \hat{k}) \times \hat{j} \] Substituting \(\vec{a}\): \[ = \hat{j} \times ((x \hat{i} + y \hat{j} + z \hat{k}) - \hat{k}) \times \hat{j} \] This simplifies to: \[ = \hat{j} \times (x \hat{i} + y \hat{j} + (z - 1) \hat{k}) \times \hat{j} \] Calculating the cross product: \[ = \hat{j} \times (x \hat{i}) + \hat{j} \times ((z - 1) \hat{k}) = x(\hat{j} \times \hat{i}) + (z - 1)(\hat{j} \times \hat{k}) = -x \hat{k} + (z - 1) \hat{i} \] So the second term simplifies to: \[ (z - 1) \hat{i} - x \hat{k} \] ### Step 4: Expand the third term The third term is: \[ \hat{k} \times (\vec{a} - \hat{i}) \times \hat{k} \] Substituting \(\vec{a}\): \[ = \hat{k} \times ((x \hat{i} + y \hat{j} + z \hat{k}) - \hat{i}) \times \hat{k} \] This simplifies to: \[ = \hat{k} \times ((x - 1) \hat{i} + y \hat{j}) \times \hat{k} \] Calculating the cross product: \[ = \hat{k} \times ((x - 1) \hat{i}) + \hat{k} \times (y \hat{j}) = (x - 1)(\hat{k} \times \hat{i}) + y(\hat{k} \times \hat{j}) = -(x - 1) \hat{j} + y \hat{i} \] So the third term simplifies to: \[ y \hat{i} - (x - 1) \hat{j} \] ### Step 5: Combine all terms Now we combine all three simplified terms: \[ [(y - 1) \hat{k} - z \hat{j}] + [(z - 1) \hat{i} - x \hat{k}] + [y \hat{i} - (x - 1) \hat{j}] = 0 \] Combining like terms: \[ (z - 1 + y) \hat{i} + [-(z + (x - 1))] \hat{j} + [(y - x)] \hat{k} = 0 \] ### Step 6: Set coefficients to zero Setting each coefficient to zero gives us the following equations: 1. \(z - 1 + y = 0\) 2. \(-z - (x - 1) = 0\) 3. \(y - x = 0\) ### Step 7: Solve the equations From equation 3, we have: \[ y = x \] Substituting \(y\) in equation 1: \[ z - 1 + x = 0 \implies z = 1 - x \] Substituting \(z\) in equation 2: \[ -(1 - x) - (x - 1) = 0 \implies -1 + x - x + 1 = 0 \] This holds true for any \(x\). ### Conclusion Thus, we have: \[ x + y + z = x + x + (1 - x) = 1 + x \] If \(x = \frac{1}{2}\), then \(y = \frac{1}{2}\) and \(z = 0\). ### Final Result The values of \(x\), \(y\), and \(z\) can be \( \frac{1}{2}, \frac{1}{2}, 0 \) respectively, leading to: \[ x + y = 1 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If hati xx[(veca-hatj)xxhati]+hatjxx[(veca-hatk)xxhatj]+veckxx[(veca-veci)xxhatk]=0 , then find vector veca .

The value of hati.(hatj xx hatk) + hatj.(hati xx hatk) + hatk.( hati xx hatj) is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

If veca=2hati-3hatj+4hatk, veca.vecb=2 and veca xx vecb=hati+2hatj+hatk , then vecb is equal to

Consider three vectors veca , vecb and vecc Statement 1: vecaxxvecb = ((hatixxveca).vecb)hati+ ((hatj xx veca).vecb)hatj + (hatk xxveca).vecb)hatk Statement 2: vecc= (hati.vecc)hati+ (hatj .vecc) hatj + (hatk. vecc)hatk

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

VK JAISWAL ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-2 : One or More than One Answer is/are Correct
  1. If equation of three lines are : (x)/(1)=(y)/(2)=(z)/(3), (x)/(2)=...

    Text Solution

    |

  2. If veca=hati+6hatj+3hatk, vecb=3hati+2hatj+hatk and vec c=(alpha+1)hat...

    Text Solution

    |

  3. Consider the lines : L(1): (x-2)/(1)=(y-1)/(7)=(z+2)/(-5) L(2):x-4...

    Text Solution

    |

  4. Let hata, hatb and hatc be three unit vectors such that hata=hatb+(h...

    Text Solution

    |

  5. The value(s) of mu for which the straight lines vecr=3hati-2hatj-4hatk...

    Text Solution

    |

  6. If hati xx [ (veca-hatj) xxhati]+ hatj xx [(veca - hatk)xx hatj] +hatk...

    Text Solution

    |

  7. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to (a)[veca...

    Text Solution

    |

  8. If veca,vecb,vecc & vecd are position vector of point A,B,C and D resp...

    Text Solution

    |

  9. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  10. Consider the lines x=y=z and line 2x+y+z-1=0=3x+y+2z-2, then

    Text Solution

    |

  11. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  12. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  13. Let a be a real number and vec alpha = hati +2hatj, vec beta=2hati+a h...

    Text Solution

    |

  14. The volume of a right triangular prism ABCA(1)B(1)C(1) is equal to 3 c...

    Text Solution

    |

  15. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  16. If a line has a vector equation, vecr=2hati +6hatj+lambda(hati-3hatj) ...

    Text Solution

    |

  17. Let M,N, P and Q be the mid points of the edges AB, CD, AC and BD resp...

    Text Solution

    |

  18. The solution vectors vecr of the equation vecr xx hati=hatj+hatk and v...

    Text Solution

    |

  19. The lines with vector equations are, vecr(1)=3hati+6hatj+lambda(-4hat...

    Text Solution

    |