Home
Class 12
MATHS
If (veca xx vecb) xx (vec c xx vecd)=h ...

If `(veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd`, where `veca, vecb` are non-collinear and `vec c, vec d` are also non-collinear then :

A

`h=[vecb vec c vecd]`

B

`k=[veca vec c vecd]`

C

`r=[veca vecb vecd]`

D

`s= -[veca vecb vec c]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = h \vec{a} + k \vec{b} = r \vec{c} + s \vec{d}\), we will use the properties of vector products, specifically the vector triple product. ### Step 1: Define the Cross Products Let us define: \[ \vec{p} = \vec{a} \times \vec{b} \] Thus, we can rewrite our equation as: \[ \vec{p} \times (\vec{c} \times \vec{d}) = h \vec{a} + k \vec{b} \] ### Step 2: Apply the Vector Triple Product Identity Using the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] we can apply it to our equation: \[ \vec{p} \times (\vec{c} \times \vec{d}) = (\vec{p} \cdot \vec{d}) \vec{c} - (\vec{p} \cdot \vec{c}) \vec{d} \] ### Step 3: Substitute \(\vec{p}\) Substituting \(\vec{p} = \vec{a} \times \vec{b}\) into the equation: \[ ((\vec{a} \times \vec{b}) \cdot \vec{d}) \vec{c} - ((\vec{a} \times \vec{b}) \cdot \vec{c}) \vec{d} = h \vec{a} + k \vec{b} \] ### Step 4: Compare Coefficients Now we can compare coefficients on both sides of the equation. The left side gives us: - Coefficient of \(\vec{c}\): \((\vec{a} \times \vec{b}) \cdot \vec{d}\) - Coefficient of \(\vec{d}\): \(-(\vec{a} \times \vec{b}) \cdot \vec{c}\) From the right side, we have: - Coefficient of \(\vec{a}\): \(h\) - Coefficient of \(\vec{b}\): \(k\) ### Step 5: Write the Values of \(r\) and \(s\) Now, we can express the coefficients: - For \(r\) and \(s\), we can also express the equation in terms of \(\vec{c}\) and \(\vec{d}\): Let \(\vec{q} = \vec{c} \times \vec{d}\): \[ \vec{a} \times \vec{b} \times \vec{q} = r \vec{c} + s \vec{d} \] Applying the vector triple product identity again: \[ (\vec{a} \times \vec{b}) \cdot \vec{d} \vec{c} - (\vec{a} \times \vec{b}) \cdot \vec{c} \vec{d} = r \vec{c} + s \vec{d} \] ### Step 6: Final Values From the above comparisons, we can conclude: - \(h = (\vec{a} \times \vec{b}) \cdot \vec{d}\) - \(k = -(\vec{a} \times \vec{b}) \cdot \vec{c}\) - \(r = (\vec{a} \times \vec{b}) \cdot \vec{d}\) - \(s = -(\vec{a} \times \vec{b}) \cdot \vec{c}\) ### Summary of Values Thus, we have: - \(h = (\vec{a} \times \vec{b}) \cdot \vec{d}\) - \(k = -(\vec{a} \times \vec{b}) \cdot \vec{c}\) - \(r = (\vec{a} \times \vec{b}) \cdot \vec{d}\) - \(s = -(\vec{a} \times \vec{b}) \cdot \vec{c}\)
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

If (veca xx vecb) xx (vecc xx vecd) . (veca xx vecd) =0 then which of the following may be true ?

36. If vec a, vec b,vec c and vec d are unit vectors such that (vec a xx vec b) . vec c xx vec d= 1 and vec a.vec c =1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c ,vec d are non -coplanar c) vec b, vecd are non parallel d) vec a , vec d are parallel and vec b, vec c are parallel

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca xx (vec b xx vecc) is perpendicular to (veca xx vecb ) xx vecc , we may have

If (veca xx vecb)xx vec c=veca xx (vecb xx vec c) , where veca, vecb and vec c are any three vectors such that veca*vecb ne 0, vecb*vec c ne 0 , then veca and vec c are :

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(veccxxvecd)=1 and veca.vecc=1/2 then (A) veca,vecb,vecc are non coplanar (B) vecb,vecc, vecd are non coplanar (C) vecb, vecd are non paralel (D) veca, vecd are paralel and vecb, vecc are parallel

If vecaxx[vecaxx{vecaxx(vecaxxvecb)}]=|veca|^4 vecb how are veca and vecb related? (A) veca and vecb are coplanar (B) veca and vecb are collinear (C) veca is perpendicular to vecb (D) veca is parallel to vecb but veca and vecb are non collinear

If the points P( veca + 2 vec b + vec c ), Q (2 veca + 3 vecb), R (vecb+ t vec c ) are collinear, where veca , vec b , vec c are non-coplanar vectors, the value of t is

Let vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a) , where veca, vecb, vec c are non-zero and non-coplanar vectors. If vecr is orthogonal to veca+vecb+vec c , then find the minimum value of (4)/(pi^(2))(x^(2)+y^(2)) .

VK JAISWAL ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-2 : One or More than One Answer is/are Correct
  1. If equation of three lines are : (x)/(1)=(y)/(2)=(z)/(3), (x)/(2)=...

    Text Solution

    |

  2. If veca=hati+6hatj+3hatk, vecb=3hati+2hatj+hatk and vec c=(alpha+1)hat...

    Text Solution

    |

  3. Consider the lines : L(1): (x-2)/(1)=(y-1)/(7)=(z+2)/(-5) L(2):x-4...

    Text Solution

    |

  4. Let hata, hatb and hatc be three unit vectors such that hata=hatb+(h...

    Text Solution

    |

  5. The value(s) of mu for which the straight lines vecr=3hati-2hatj-4hatk...

    Text Solution

    |

  6. If hati xx [ (veca-hatj) xxhati]+ hatj xx [(veca - hatk)xx hatj] +hatk...

    Text Solution

    |

  7. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to (a)[veca...

    Text Solution

    |

  8. If veca,vecb,vecc & vecd are position vector of point A,B,C and D resp...

    Text Solution

    |

  9. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  10. Consider the lines x=y=z and line 2x+y+z-1=0=3x+y+2z-2, then

    Text Solution

    |

  11. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  12. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  13. Let a be a real number and vec alpha = hati +2hatj, vec beta=2hati+a h...

    Text Solution

    |

  14. The volume of a right triangular prism ABCA(1)B(1)C(1) is equal to 3 c...

    Text Solution

    |

  15. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  16. If a line has a vector equation, vecr=2hati +6hatj+lambda(hati-3hatj) ...

    Text Solution

    |

  17. Let M,N, P and Q be the mid points of the edges AB, CD, AC and BD resp...

    Text Solution

    |

  18. The solution vectors vecr of the equation vecr xx hati=hatj+hatk and v...

    Text Solution

    |

  19. The lines with vector equations are, vecr(1)=3hati+6hatj+lambda(-4hat...

    Text Solution

    |