Home
Class 12
MATHS
The lines with vector equations are, ve...

The lines with vector equations are, `vecr_(1)=3hati+6hatj+lambda(-4hati+3hatj+2hatk) and vecr_(2)=-2hati+7hatj+mu(-4hati+hatj+hatk)` are such that :

A

they are coplanar

B

they do not intersect

C

they are skew

D

the angle between then is `tan^(-1)(3//7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vector equations of the two lines and determine their relationship. The vector equations are: 1. \( \vec{r_1} = 3\hat{i} + 6\hat{j} + \lambda(-4\hat{i} + 3\hat{j} + 2\hat{k}) \) 2. \( \vec{r_2} = -2\hat{i} + 7\hat{j} + \mu(-4\hat{i} + \hat{j} + \hat{k}) \) ### Step 1: Identify Position and Direction Vectors From the equations, we can identify the position and direction vectors for both lines. - For line \( \vec{r_1} \): - Position vector \( \vec{l_1} = 3\hat{i} + 6\hat{j} \) - Direction vector \( \vec{m_1} = -4\hat{i} + 3\hat{j} + 2\hat{k} \) - For line \( \vec{r_2} \): - Position vector \( \vec{l_2} = -2\hat{i} + 7\hat{j} \) - Direction vector \( \vec{m_2} = -4\hat{i} + \hat{j} + \hat{k} \) ### Step 2: Check for Coplanarity To check if the lines are coplanar, we use the condition: \[ (\vec{l_2} - \vec{l_1}) \cdot (\vec{m_1} \times \vec{m_2}) = 0 \] First, calculate \( \vec{l_2} - \vec{l_1} \): \[ \vec{l_2} - \vec{l_1} = (-2\hat{i} + 7\hat{j}) - (3\hat{i} + 6\hat{j}) = -5\hat{i} + \hat{j} \] Next, calculate \( \vec{m_1} \times \vec{m_2} \): \[ \vec{m_1} = \begin{pmatrix} -4 \\ 3 \\ 2 \end{pmatrix}, \quad \vec{m_2} = \begin{pmatrix} -4 \\ 1 \\ 1 \end{pmatrix} \] Using the determinant method: \[ \vec{m_1} \times \vec{m_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -4 & 3 & 2 \\ -4 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(3 \cdot 1 - 2 \cdot 1) - \hat{j}(-4 \cdot 1 - 2 \cdot -4) + \hat{k}(-4 \cdot 1 - 3 \cdot -4) \] \[ = \hat{i}(3 - 2) - \hat{j}(-4 + 8) + \hat{k}(-4 + 12) \] \[ = \hat{i}(1) - \hat{j}(4) + \hat{k}(8) = \hat{i} - 4\hat{j} + 8\hat{k} \] Now, compute the dot product: \[ (-5\hat{i} + \hat{j}) \cdot (\hat{i} - 4\hat{j} + 8\hat{k}) = (-5)(1) + (1)(-4) + (0)(8) = -5 - 4 = -9 \] Since the dot product is not equal to zero, the lines are **not coplanar**. ### Step 3: Check for Intersection For the lines to intersect, we need to set \( \vec{r_1} = \vec{r_2} \). Equating the components: 1. \( 3 - 4\lambda = -2 - 4\mu \) 2. \( 6 + 3\lambda = 7 + \mu \) 3. \( 2\lambda = \mu \) From the third equation, substitute \( \mu = 2\lambda \) into the first two equations: 1. \( 3 - 4\lambda = -2 - 4(2\lambda) \) \[ 3 - 4\lambda = -2 - 8\lambda \implies 4\lambda - 8\lambda = -2 - 3 \implies -4\lambda = -5 \implies \lambda = \frac{5}{4} \] 2. Substitute \( \lambda \) into \( \mu = 2\lambda \): \[ \mu = 2 \cdot \frac{5}{4} = \frac{5}{2} \] Now, substitute \( \lambda \) and \( \mu \) back into the first equation: \[ 3 - 4\left(\frac{5}{4}\right) = -2 - 4\left(\frac{5}{2}\right) \] Calculating both sides: \[ 3 - 5 = -2 - 10 \implies -2 = -12 \text{ (not equal)} \] Since there are no values of \( \lambda \) and \( \mu \) that satisfy all equations, the lines **do not intersect**. ### Step 4: Check for Skewness Since the lines are not parallel (as shown by the non-zero cross product) and do not intersect, they are classified as **skew lines**. ### Step 5: Calculate the Angle Between the Lines The angle \( \theta \) between the two lines can be found using the formula: \[ \cos \theta = \frac{\vec{m_1} \cdot \vec{m_2}}{|\vec{m_1}| |\vec{m_2}|} \] Calculate \( \vec{m_1} \cdot \vec{m_2} \): \[ \vec{m_1} \cdot \vec{m_2} = (-4)(-4) + (3)(1) + (2)(1) = 16 + 3 + 2 = 21 \] Now calculate the magnitudes: \[ |\vec{m_1}| = \sqrt{(-4)^2 + 3^2 + 2^2} = \sqrt{16 + 9 + 4} = \sqrt{29} \] \[ |\vec{m_2}| = \sqrt{(-4)^2 + 1^2 + 1^2} = \sqrt{16 + 1 + 1} = \sqrt{18} = 3\sqrt{2} \] Now substitute into the cosine formula: \[ \cos \theta = \frac{21}{\sqrt{29} \cdot 3\sqrt{2}} = \frac{21}{3\sqrt{58}} = \frac{7}{\sqrt{58}} \] ### Conclusion The lines are: - Not coplanar - Do not intersect - Skew lines - The angle between them is given by \( \theta = \cos^{-1}\left(\frac{7}{\sqrt{58}}\right) \)
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos
  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines l_(1)and l_(1) whose vector equations are vecr=(hati+hatj) + lambda (3hati + 4hatj - 2hatk) …(i) and vecr=(2hati+3hatj) + mu (6hati + 8hatj - 4hatk) …(ii)

Find the vector equation of the plane in which the lines vecr=hati+hatj+lambda(hati+2hatj-hatk) and vecr=(hati+hatj)+mu(-hati+hatj-2hatk) lie.

Find the vector equation of the plane in which the lines vecr=hati+hatj+lambda(hati+2hatj-hatk) and vecr=(hati+hatj)+mu(-hati+hatj-2hatk) lie.

Find the shortest distance between the two lines whose vector equations are given by: vecr=hati+2hatj+3hatk+lamda(2hati+3hatj+4hatk) and vecr=2hati+4hatj+5hatk+mu(3hati+4hatj+5hatk)

The line whose vector equation are vecr =2 hati - 3 hatj + 7 hatk + lamda (2 hati + p hatj + 5 hatk) and vecr = hati - 2 hatj + 3 hatk+ mu (3 hati - p hatj + p hatk) are perpendicular for all values of gamma and mu if p equals :

Find the shortest distance between the lines l_(1) and l_(2) whose vector equation are vecr =lambda (2hati+ 3hatj+ 4hatk) and vecr=(2hati+3hatj)+mu(2hati+3hatj+ 4hatk)

Find the shortest distance vecr=hati+2hatj+3hatk+lambda(hati-3hatj+2hatk)and vecr= 4hati+5hatj+6hatk+mu(2hati+3hatj+hatk) .

Find the angle between the lines vecr = (hati+hatj)+lambda(3hati+2hatj+6hatk) and vecr = (hati-hatk) + mu(hati+2hatj+2hatk)

Find the shrotest distance between the lines vecr = hati+hatj+ lambda(2hati-hatj+hatk) and vecr= 2hati+hatj-hatk+mu(2hati-hatj+hatk) .

Find the angle between the line: vecr=4hati-hatj+lamda(hati+2hatj-2hatk) and vevr=hati-hatj+2hatk-mu(2hati+4hatj-4hatk)

VK JAISWAL ENGLISH-VECTOR & 3DIMENSIONAL GEOMETRY-Exercise-2 : One or More than One Answer is/are Correct
  1. If equation of three lines are : (x)/(1)=(y)/(2)=(z)/(3), (x)/(2)=...

    Text Solution

    |

  2. If veca=hati+6hatj+3hatk, vecb=3hati+2hatj+hatk and vec c=(alpha+1)hat...

    Text Solution

    |

  3. Consider the lines : L(1): (x-2)/(1)=(y-1)/(7)=(z+2)/(-5) L(2):x-4...

    Text Solution

    |

  4. Let hata, hatb and hatc be three unit vectors such that hata=hatb+(h...

    Text Solution

    |

  5. The value(s) of mu for which the straight lines vecr=3hati-2hatj-4hatk...

    Text Solution

    |

  6. If hati xx [ (veca-hatj) xxhati]+ hatj xx [(veca - hatk)xx hatj] +hatk...

    Text Solution

    |

  7. [vecaxx vecb " " vecc xx vecd " " vecexx vecf] is equal to (a)[veca...

    Text Solution

    |

  8. If veca,vecb,vecc & vecd are position vector of point A,B,C and D resp...

    Text Solution

    |

  9. veca and vecc are unit vectors and |vecb|=4 the angle between veca and...

    Text Solution

    |

  10. Consider the lines x=y=z and line 2x+y+z-1=0=3x+y+2z-2, then

    Text Solution

    |

  11. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  12. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  13. Let a be a real number and vec alpha = hati +2hatj, vec beta=2hati+a h...

    Text Solution

    |

  14. The volume of a right triangular prism ABCA(1)B(1)C(1) is equal to 3 c...

    Text Solution

    |

  15. If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc=...

    Text Solution

    |

  16. If a line has a vector equation, vecr=2hati +6hatj+lambda(hati-3hatj) ...

    Text Solution

    |

  17. Let M,N, P and Q be the mid points of the edges AB, CD, AC and BD resp...

    Text Solution

    |

  18. The solution vectors vecr of the equation vecr xx hati=hatj+hatk and v...

    Text Solution

    |

  19. The lines with vector equations are, vecr(1)=3hati+6hatj+lambda(-4hat...

    Text Solution

    |