Home
Class 12
MATHS
A sequence of 2xx2 matrices {M(n)} is de...

A sequence of `2xx2` matrices `{M_(n)}` is defined as follows `M_(n)=[((1)/((2n+1)!),(1)/((2n+2)!)),(sum_(k=0)^(n)((2n+2)!)/((2k+2)!), sum_(k=0)^(n)((2n+1)!)/((2k+1)!))]` then `lim_(n to oo) "det". (M_(n))=lambda-e^(-1)`. Find `lambda`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit of the determinant of the matrix \( M_n \) as \( n \) approaches infinity, and then determine the value of \( \lambda \) such that: \[ \lim_{n \to \infty} \text{det}(M_n) = \lambda - e^{-1} \] ### Step-by-Step Solution: 1. **Define the Matrix \( M_n \)**: The matrix \( M_n \) is given by: \[ M_n = \begin{pmatrix} \frac{1}{(2n+1)!} & \frac{1}{(2n+2)!} \\ \sum_{k=0}^{n} \frac{(2n+2)!}{(2k+2)!} & \sum_{k=0}^{n} \frac{(2n+1)!}{(2k+1)!} \end{pmatrix} \] 2. **Calculate the Determinant**: The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated as: \[ \text{det}(M_n) = ad - bc \] For our matrix, we have: - \( a = \frac{1}{(2n+1)!} \) - \( b = \frac{1}{(2n+2)!} \) - \( c = \sum_{k=0}^{n} \frac{(2n+2)!}{(2k+2)!} \) - \( d = \sum_{k=0}^{n} \frac{(2n+1)!}{(2k+1)!} \) Thus, \[ \text{det}(M_n) = \frac{1}{(2n+1)!} \cdot \sum_{k=0}^{n} \frac{(2n+1)!}{(2k+1)!} - \frac{1}{(2n+2)!} \cdot \sum_{k=0}^{n} \frac{(2n+2)!}{(2k+2)!} \] 3. **Simplify the Determinant**: We can factor out \( \frac{(2n+1)!}{(2n+2)!} \) and \( \frac{(2n+2)!}{(2n+1)!} \): \[ \text{det}(M_n) = \frac{1}{(2n+1)!} \left( \sum_{k=0}^{n} \frac{(2n+1)!}{(2k+1)!} - \frac{(2n+2)!}{(2n+1)!} \sum_{k=0}^{n} \frac{(2n+2)!}{(2k+2)!} \right) \] 4. **Evaluate the Limit**: As \( n \to \infty \), the sums can be recognized as series that converge to known values: \[ \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} = \sinh(1) \quad \text{and} \quad \sum_{k=0}^{\infty} \frac{1}{(2k+2)!} = \frac{1}{2} \sinh(1) \] Therefore, we can evaluate: \[ \lim_{n \to \infty} \text{det}(M_n) = 1 - e^{-1} \] 5. **Set Up the Equation**: From the problem statement, we have: \[ \lim_{n \to \infty} \text{det}(M_n) = \lambda - e^{-1} \] Setting the two expressions equal gives: \[ 1 - e^{-1} = \lambda - e^{-1} \] 6. **Solve for \( \lambda \)**: Rearranging the equation yields: \[ \lambda = 1 \] ### Final Answer: Thus, the value of \( \lambda \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

A sequence of numbers A_n, n=1,2,3 is defined as follows : A_1=1/2 and for each ngeq2, A_n=((2n-3)/(2n))A_(n-1) , then prove that sum_(k=1)^n A_k<1,ngeq1

If a_(K)=(1)/(K(K+1)) for K=1, 2, 3....n , then (sum_(K=1)^(n)a_(K))^(2)=

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

If sum_(n=0)^oo2cot^(-1) ((n^2+n-4)/2)=kpi then find the value of k

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

The limit of (1)/(n ^(4)) sum _(k =1) ^(n) k (k +2) (k +4) as n to oo is equal to (1)/(lamda), then lamda =

Find the sum sum_(n=1)^(oo)(6^(n))/((3^(n)-2^(n))(3^(n+1)-2^(n+1)))

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals