Home
Class 12
MATHS
Let |veca|=1, |vecb|=1 and |veca+vecb|=s...

Let `|veca|=1, |vecb|=1 and |veca+vecb|=sqrt(3)`. If `vec c` be a vector such that `vec c=veca+2vecb-3(veca xx vecb)` and `p=|(veca xx vecb) xx vec c|`, then find `[p^(2)]`. (where [ ] represents greatest integer function).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow a systematic approach step by step. ### Step 1: Analyze the given information We have the following: - \( |\vec{a}| = 1 \) - \( |\vec{b}| = 1 \) - \( |\vec{a} + \vec{b}| = \sqrt{3} \) ### Step 2: Use the properties of vectors From the property of magnitudes, we know: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2 \vec{a} \cdot \vec{b} \] Substituting the known values: \[ (\sqrt{3})^2 = 1^2 + 1^2 + 2 \vec{a} \cdot \vec{b} \] This simplifies to: \[ 3 = 1 + 1 + 2 \vec{a} \cdot \vec{b} \] \[ 3 = 2 + 2 \vec{a} \cdot \vec{b} \] \[ 2 \vec{a} \cdot \vec{b} = 1 \implies \vec{a} \cdot \vec{b} = \frac{1}{2} \] ### Step 3: Define vector \( \vec{c} \) We are given: \[ \vec{c} = \vec{a} + 2\vec{b} - 3(\vec{a} \times \vec{b}) \] ### Step 4: Find \( p = |\vec{a} \times \vec{b} \times \vec{c}| \) Using the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z})\vec{y} - (\vec{x} \cdot \vec{y})\vec{z} \] Let \( \vec{x} = \vec{a} \times \vec{b} \), \( \vec{y} = \vec{c} \), and \( \vec{z} = \vec{a} \times \vec{b} \): \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})(\vec{b}) - (\vec{a} \cdot \vec{b})(\vec{c}) \] ### Step 5: Calculate \( \vec{a} \cdot \vec{c} \) Calculating \( \vec{a} \cdot \vec{c} \): \[ \vec{a} \cdot \vec{c} = \vec{a} \cdot \left( \vec{a} + 2\vec{b} - 3(\vec{a} \times \vec{b}) \right) \] \[ = \vec{a} \cdot \vec{a} + 2 \vec{a} \cdot \vec{b} - 3 \vec{a} \cdot (\vec{a} \times \vec{b}) \] Since \( \vec{a} \cdot (\vec{a} \times \vec{b}) = 0 \): \[ = 1 + 2 \cdot \frac{1}{2} = 1 + 1 = 2 \] ### Step 6: Calculate \( \vec{b} \cdot \vec{c} \) Calculating \( \vec{b} \cdot \vec{c} \): \[ \vec{b} \cdot \vec{c} = \vec{b} \cdot \left( \vec{a} + 2\vec{b} - 3(\vec{a} \times \vec{b}) \right) \] \[ = \vec{b} \cdot \vec{a} + 2 \vec{b} \cdot \vec{b} - 3 \vec{b} \cdot (\vec{a} \times \vec{b}) \] Again, \( \vec{b} \cdot (\vec{a} \times \vec{b}) = 0 \): \[ = \frac{1}{2} + 2 \cdot 1 = \frac{1}{2} + 2 = \frac{1}{2} + \frac{4}{2} = \frac{5}{2} \] ### Step 7: Calculate \( p \) Now substituting back: \[ p = |\vec{a} \cdot \vec{c} \vec{b} - \vec{a} \cdot \vec{b} \vec{c}| \] \[ = |2 \vec{b} - \frac{1}{2} \vec{c}| \] Substituting \( \vec{c} \): \[ = |2 \vec{b} - \frac{1}{2} (\vec{a} + 2\vec{b} - 3(\vec{a} \times \vec{b}) )| \] Calculating this gives us: \[ = |2 \vec{b} - \frac{1}{2} \vec{a} - \vec{b} + \frac{3}{2}(\vec{a} \times \vec{b})| \] \[ = |\frac{3}{2} \vec{b} - \frac{1}{2} \vec{a} + \frac{3}{2}(\vec{a} \times \vec{b})| \] ### Step 8: Find \( p^2 \) Calculating \( p^2 \): \[ p^2 = \left( \frac{3}{2} \right)^2 + \left( -\frac{1}{2} \right)^2 + \left( \frac{3}{2} \right)^2 \] \[ = \frac{9}{4} + \frac{1}{4} + \frac{9}{4} = \frac{19}{4} \] ### Step 9: Apply the greatest integer function The greatest integer function \( [p^2] = [\frac{19}{4}] = [4.75] = 4 \). ### Final Answer Thus, the answer is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Given |veca|=|vecb|=1 and |veca + vecb|= sqrt3 "if" vecc is a vector such that vecc -veca - 2vecb = 3(veca xx vecb) then find the value of vecc . Vecb .

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

If veca , vecb are unit vectors such that |vec a+vecb|=-1 " then " |2veca -3vecb| =

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Let vec a, vec b, vec c are three vectors such that veca .veca=vecb . vecb = vecc . vecc = 3 and |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=27, then

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=