Home
Class 12
MATHS
Let vecr=(veca xx vecb)sinx+(vecb xx vec...

Let `vecr=(veca xx vecb)sinx+(vecb xx vec c)cosy+2(vec c xx vec a)`, where `veca, vecb, vec c` are non-zero and non-coplanar vectors. If `vecr` is orthogonal to `veca+vecb+vec c`, then find the minimum value of `(4)/(pi^(2))(x^(2)+y^(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the minimum value of \( \frac{4}{\pi^2}(x^2 + y^2) \) given that the vector \( \vec{r} \) is orthogonal to \( \vec{a} + \vec{b} + \vec{c} \). ### Step 1: Set up the equation for orthogonality Since \( \vec{r} \) is orthogonal to \( \vec{a} + \vec{b} + \vec{c} \), we can write: \[ \vec{r} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] ### Step 2: Expand the dot product Substituting \( \vec{r} \): \[ \left( (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2(\vec{c} \times \vec{a}) \right) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] ### Step 3: Distribute the dot product Expanding this gives: \[ (\vec{a} \times \vec{b}) \sin x \cdot (\vec{a} + \vec{b} + \vec{c}) + (\vec{b} \times \vec{c}) \cos y \cdot (\vec{a} + \vec{b} + \vec{c}) + 2(\vec{c} \times \vec{a}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] ### Step 4: Analyze each term 1. \( (\vec{a} \times \vec{b}) \cdot \vec{a} = 0 \) (since \( \vec{a} \times \vec{b} \) is perpendicular to \( \vec{a} \)) 2. \( (\vec{a} \times \vec{b}) \cdot \vec{b} = 0 \) (same reasoning) 3. \( (\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{b} \cdot \vec{c} \) (let's denote this as \( V \)) Thus, the first term simplifies to: \[ V \sin x \] For the second term: 1. \( (\vec{b} \times \vec{c}) \cdot \vec{a} = \vec{b} \cdot \vec{c} \cdot \vec{a} \) (denote as \( W \)) 2. \( (\vec{b} \times \vec{c}) \cdot \vec{b} = 0 \) 3. \( (\vec{b} \times \vec{c}) \cdot \vec{c} = 0 \) Thus, the second term simplifies to: \[ W \cos y \] For the third term: 1. \( (\vec{c} \times \vec{a}) \cdot \vec{a} = 0 \) 2. \( (\vec{c} \times \vec{a}) \cdot \vec{b} = 2 \vec{c} \cdot \vec{a} \cdot \vec{b} \) (denote as \( Z \)) 3. \( (\vec{c} \times \vec{a}) \cdot \vec{c} = 0 \) Thus, the third term simplifies to: \[ 2Z \] ### Step 5: Combine the results Putting this all together, we have: \[ V \sin x + W \cos y + 2Z = 0 \] ### Step 6: Solve for \( \sin x \) and \( \cos y \) From the equation \( V \sin x + W \cos y + 2Z = 0 \), we can isolate \( \sin x \) and \( \cos y \): \[ \sin x = -\frac{W \cos y + 2Z}{V} \] ### Step 7: Find the minimum value of \( \frac{4}{\pi^2}(x^2 + y^2) \) The maximum values of \( \sin x \) and \( \cos y \) are constrained between -1 and 1. Therefore, the minimum occurs when: \[ \sin x = -1 \quad \text{and} \quad \cos y = -1 \] This gives: \[ x = -\frac{\pi}{2}, \quad y = \pi \] ### Step 8: Calculate \( x^2 + y^2 \) Now we compute: \[ x^2 + y^2 = \left(-\frac{\pi}{2}\right)^2 + \pi^2 = \frac{\pi^2}{4} + \pi^2 = \frac{\pi^2}{4} + \frac{4\pi^2}{4} = \frac{5\pi^2}{4} \] ### Step 9: Substitute into the expression Finally, substituting back into the expression: \[ \frac{4}{\pi^2} \left( x^2 + y^2 \right) = \frac{4}{\pi^2} \cdot \frac{5\pi^2}{4} = 5 \] ### Conclusion The minimum value of \( \frac{4}{\pi^2}(x^2 + y^2) \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Let vecr = (veca xx vecb)sinx + (vecb xx vecc)cosy+(vecc xx veca) , where veca,vecb and vecc are non-zero non-coplanar vectors, If vecr is orthogonal to 3veca + 5vecb+2vecc , then the value of sec^(2)y+"cosec"^(2)x+secy" cosec "x is

If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd , where veca, vecb are non-collinear and vec c, vec d are also non-collinear then :

If (veca xx vecb)xx vec c=veca xx (vecb xx vec c) , where veca, vecb and vec c are any three vectors such that veca*vecb ne 0, vecb*vec c ne 0 , then veca and vec c are :

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

Let veca and vecb be two non- zero perpendicular vectors. A vector vecr satisfying the equation vecr xx vecb = veca can be

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If the points P( veca + 2 vec b + vec c ), Q (2 veca + 3 vecb), R (vecb+ t vec c ) are collinear, where veca , vec b , vec c are non-coplanar vectors, the value of t is

If vec a , vec b , vec c are any three noncoplanar vector, then ( veca + vecb + vecc )[( veca + vecb )×( veca + vecc )] is :

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals