Home
Class 12
MATHS
A, B, C, D are four points in the space ...

A, B, C, D are four points in the space and satisfy `|vec(AB)|=3, |vec(BC)|=7, |vec(CD)|=11 and |vec(DA)|=9`. Then find the value of `vec(AC)*vec(BD)`.

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

A,B,C,D are four points in the space and satisfy | vec A B|=3,| vec B C|=7,| vec C D|=11&| vec D A|=9 , then value of vec (AC). vec(BD) .

If vec(a) and vec(b) are two vectors such that |vec(a)|= 2, |vec(b)| = 3 and vec(a)*vec(b)=4 then find the value of |vec(a)-vec(b)|

If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a)*vec(b)+vec(b)*vec(c )+vec(c )*vec(a) .

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

If A,B,C,D are any four points in space prove that vec(AB)xxvec(CD)+vec(BC)xvec(AD)+vec(CA)xxvec(BD)=2vec(AB)xxvec(CA)

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

A , B , C , D are any four points, prove that vec A Bdot vec C D+ vec B Cdot vec A D+ vec C Adot vec B D=0.

If A ,B ,C ,D are four distinct point in space such that vec(A B) is not perpendicular to vec(C D) and satisfies vec (A B).vec (C D)=k(| vec(A D)|^2+| vec(B C)|^2-| vec(A C)|^2-| vec(B D)|^2), then find the value of kdot

If A ,B ,C ,D be any four points in space, prove that | vec A Bxx vec C D+ vec B Cxx vec A D+ vec C Axx vec B D|=4 (Area of triangle ABC)