Home
Class 12
MATHS
Let vec ua n d vec v be unit vectors su...

Let ` vec ua n d vec v` be unit vectors such that ` vec uxx vec v+ vec u= vec w` and ` vec wxx vec u= vec vdot` Find the value of `[ vec u vec v vec w]dot`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • VECTOR & 3DIMENSIONAL GEOMETRY

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • TRIGONOMETRIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Let vec u and vec v be unit vectors such that vec uxx vec v+ vec u= vec w and vec wxx vec u= vec v . Find the value of [ vec u \ vec v \ vec w] .

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b+ vec c= vec0 find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot'

If vec aa n d vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b]dot

If vec a , vec b ,a n d vec c are unit vectors such that vec a+ vec b+ vec c=0, then find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot

Let vec u , vec v and vec w be vectors such that vec u+ vec v+ vec w=0. If | vec u|=3,| vec v|=4 and | vec w|=5, then vec u. vec v+ vec v.vec w+ vec w.vec u is a. 47 b. -25 c. 0 d. 25

If vec b is a unit vector such that ( vec a+ vec b)dot ( (vec a- vec b))=8,\ find \ | vec a|dot

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec adot vec x=1, vec bdot vec x=3/2,| vec x|=2. Then find the angel between c and x dot

If vec a , vec b , vec c are unit vectors such that vec a+ vec b+ vec c= vec0, then write the value of vec a . vec b+ vec b . vec c+ vec c . vec a

Let vec u , vec v and vec w be vector such vec u+ vec v+ vec w= vec0 . If | vec u|=3,| vec v|=4 and | vec w|=5, then find vec u . vec v+ vec v . vec w+ vec w . vec u .