Home
Class 11
PHYSICS
A student performs an experiment to dete...

A student performs an experiment to determine the Young's modulus of a wire, exactly`2m` long, by Searle's method. In a partcular reading, the student measures the extension in the length of the wire to be `0.8mm with an uncertainty of `+- 0.05mm` at a load of exactly `1.0kg`, the student also measures the diameter of the wire to be `04mm` with an uncertainty of `+-0.01mm`. Take `g=9.8m//s^(2)` (exact). the Young's modulus obtained from the reading is

A

`( 2.0 +- 0.3) xx 10^(11) N m^(-2)`

B

`( 2.0 +- 0.2) xx 10^(11) N m^(-2)`

C

`( 2.0 +- 0.1) xx 10^(11) N m^(-2)`

D

`( 2.0 +- 0.5) xx 10^(11) N m^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the Young's modulus of a wire using the given data, we will follow these steps: ### Step 1: Understand the formula for Young's Modulus Young's modulus (Y) is defined as the ratio of stress to strain. The formula can be expressed as: \[ Y = \frac{\text{Stress}}{\text{Strain}} \] Where: - Stress = \(\frac{F}{A}\) - Strain = \(\frac{\Delta L}{L}\) ### Step 2: Calculate the Stress First, we need to calculate the force (F) applied to the wire. The force can be calculated using the weight of the load: \[ F = m \cdot g \] Given: - Mass \(m = 1.0 \, \text{kg}\) - Acceleration due to gravity \(g = 9.8 \, \text{m/s}^2\) Calculating the force: \[ F = 1.0 \, \text{kg} \times 9.8 \, \text{m/s}^2 = 9.8 \, \text{N} \] Next, we need to calculate the cross-sectional area (A) of the wire. The diameter of the wire is given as \(0.4 \, \text{mm}\), which we convert to meters: \[ d = 0.4 \, \text{mm} = 0.4 \times 10^{-3} \, \text{m} = 4 \times 10^{-4} \, \text{m} \] The radius \(r\) is: \[ r = \frac{d}{2} = \frac{4 \times 10^{-4}}{2} = 2 \times 10^{-4} \, \text{m} \] Now, we can calculate the area: \[ A = \pi r^2 = \pi (2 \times 10^{-4})^2 = \pi \times 4 \times 10^{-8} \approx 1.25664 \times 10^{-7} \, \text{m}^2 \] Now we can calculate the stress: \[ \text{Stress} = \frac{F}{A} = \frac{9.8 \, \text{N}}{1.25664 \times 10^{-7} \, \text{m}^2} \approx 7.80 \times 10^{7} \, \text{Pa} \] ### Step 3: Calculate the Strain The original length of the wire \(L\) is given as \(2 \, \text{m}\), and the extension \(\Delta L\) is given as \(0.8 \, \text{mm}\): \[ \Delta L = 0.8 \, \text{mm} = 0.8 \times 10^{-3} \, \text{m} = 8 \times 10^{-4} \, \text{m} \] Now we can calculate the strain: \[ \text{Strain} = \frac{\Delta L}{L} = \frac{8 \times 10^{-4} \, \text{m}}{2 \, \text{m}} = 4 \times 10^{-4} \] ### Step 4: Calculate Young's Modulus Now we can substitute the values of stress and strain into the Young's modulus formula: \[ Y = \frac{\text{Stress}}{\text{Strain}} = \frac{7.80 \times 10^{7} \, \text{Pa}}{4 \times 10^{-4}} \approx 1.95 \times 10^{11} \, \text{Pa} \] ### Step 5: Calculate the Uncertainty in Young's Modulus To find the uncertainty in Young's modulus, we will use the formula for fractional error: \[ \frac{\Delta Y}{Y} = \frac{\Delta F}{F} + 2\frac{\Delta d}{d} + \frac{\Delta L}{L} \] Where: - \(\Delta F = g \cdot \Delta m = 9.8 \cdot 0.05 \, \text{N}\) - \(\Delta d = 0.01 \, \text{mm} = 0.01 \times 10^{-3} \, \text{m}\) - \(\Delta L = 0.05 \, \text{mm} = 0.05 \times 10^{-3} \, \text{m}\) Calculating each term: 1. \(\Delta F = 9.8 \times 0.05 = 0.49 \, \text{N}\) 2. \(\frac{\Delta F}{F} = \frac{0.49}{9.8} \approx 0.05\) 3. \(\frac{\Delta d}{d} = \frac{0.01 \times 10^{-3}}{0.4 \times 10^{-3}} = 0.025\) 4. \(\frac{\Delta L}{L} = \frac{0.05 \times 10^{-3}}{2} = 0.025\) Now substituting into the fractional error formula: \[ \frac{\Delta Y}{Y} = 0.05 + 2(0.025) + 0.025 = 0.125 \] Now calculating the uncertainty in Young's modulus: \[ \Delta Y = Y \cdot 0.125 = (1.95 \times 10^{11}) \cdot 0.125 \approx 2.44 \times 10^{10} \, \text{Pa} \] ### Final Result Thus, the Young's modulus obtained from the readings is: \[ Y \approx 1.95 \times 10^{11} \, \text{Pa} \pm 2.44 \times 10^{10} \, \text{Pa} \]

To determine the Young's modulus of a wire using the given data, we will follow these steps: ### Step 1: Understand the formula for Young's Modulus Young's modulus (Y) is defined as the ratio of stress to strain. The formula can be expressed as: \[ Y = \frac{\text{Stress}}{\text{Strain}} \] Where: ...
Promotional Banner

Topper's Solved these Questions

  • DIMENSIONS & MEASUREMENT

    CENGAGE PHYSICS ENGLISH|Exercise Multiple correct Answer Type|8 Videos
  • DIMENSIONS & MEASUREMENT

    CENGAGE PHYSICS ENGLISH|Exercise Integer|2 Videos
  • DIMENSIONS & MEASUREMENT

    CENGAGE PHYSICS ENGLISH|Exercise Fill In The Blanks|4 Videos
  • CENTRE OF MASS

    CENGAGE PHYSICS ENGLISH|Exercise INTEGER_TYPE|1 Videos
  • FLUID MECHANICS

    CENGAGE PHYSICS ENGLISH|Exercise INTEGER_TYPE|1 Videos