Home
Class 11
PHYSICS
Student I ,II , and III perform an exper...

Student `I ,II , and III` perform an experiment for measuring the acceleration due to gravity `(g) ` usinf a simple pendulum. They use lengths of the pendulum and // or record time for different number of oscillations . The observations are shown in the following table . Least count for length ` = 0.1 cm`
`{:(underset(III)underset(II)underset(I)underset()underset()("Student"),underset(20.0)underset(64.0)underset(64.0)underset((cm))underset("Pendulam")("Length of "),underset(4)underset(4)underset(8)underset((n))underset("n Oscillation")("Number of"),underset(9.0)underset(16.0)underset(16.0)underset((s))underset("Period")("Time")):}`
Least count for time `= 0.1 s`.
If `E_(I), E_(II)` , and `E_(III)` are the percentage errors in `g` , i.,e., `((Delta g)/( g) xx 100)` for students I,II , and III, respectively , then

A

`E_(I) = 0`

B

` E_(I) is minimum`

C

`E_(I) = E_(II)`

D

`E_(II) is maximum`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of calculating the percentage errors in the acceleration due to gravity (g) for students I, II, and III, we can follow these steps: ### Step 1: Understand the formula for g The formula for calculating the acceleration due to gravity (g) using the period (T) of a simple pendulum is given by: \[ g = \frac{4\pi^2 L}{T^2} \] where \( L \) is the length of the pendulum and \( T \) is the period of oscillation. ### Step 2: Calculate g for each student We need to calculate \( g \) for each student using their respective lengths and periods. 1. **For Student I:** - Length \( L_I = 64.0 \, \text{cm} = 0.64 \, \text{m} \) - Period \( T_I = 9.0 \, \text{s} \) \[ g_I = \frac{4\pi^2 \times 0.64}{9.0^2} \] 2. **For Student II:** - Length \( L_{II} = 64.0 \, \text{cm} = 0.64 \, \text{m} \) - Period \( T_{II} = 16.0 \, \text{s} \) \[ g_{II} = \frac{4\pi^2 \times 0.64}{16.0^2} \] 3. **For Student III:** - Length \( L_{III} = 20.0 \, \text{cm} = 0.20 \, \text{m} \) - Period \( T_{III} = 4.0 \, \text{s} \) \[ g_{III} = \frac{4\pi^2 \times 0.20}{4.0^2} \] ### Step 3: Calculate the percentage error in g The formula for the percentage error in \( g \) is given by: \[ E = \frac{\Delta g}{g} \times 100 = \frac{\Delta L}{L} \times 100 + 2 \times \frac{\Delta T}{T} \times 100 \] Where: - \( \Delta L \) is the least count for length = 0.1 cm = 0.001 m - \( \Delta T \) is the least count for time = 0.1 s Now we can calculate the percentage errors for each student. 1. **For Student I:** \[ E_I = \frac{0.1}{0.64} \times 100 + 2 \times \frac{0.1}{9.0} \times 100 \] 2. **For Student II:** \[ E_{II} = \frac{0.1}{0.64} \times 100 + 2 \times \frac{0.1}{16.0} \times 100 \] 3. **For Student III:** \[ E_{III} = \frac{0.1}{0.20} \times 100 + 2 \times \frac{0.1}{4.0} \times 100 \] ### Step 4: Calculate the values Now we can compute the actual values for \( E_I, E_{II}, \) and \( E_{III} \). 1. **For Student I:** \[ E_I = \frac{0.1}{0.64} \times 100 + 2 \times \frac{0.1}{9.0} \times 100 = 15.625 + 2.222 = 17.847 \% \] 2. **For Student II:** \[ E_{II} = \frac{0.1}{0.64} \times 100 + 2 \times \frac{0.1}{16.0} \times 100 = 15.625 + 1.25 = 16.875 \% \] 3. **For Student III:** \[ E_{III} = \frac{0.1}{0.20} \times 100 + 2 \times \frac{0.1}{4.0} \times 100 = 50 + 5 = 55 \% \] ### Final Results - \( E_I \approx 17.85\% \) - \( E_{II} \approx 16.88\% \) - \( E_{III} \approx 55\% \)

To solve the problem of calculating the percentage errors in the acceleration due to gravity (g) for students I, II, and III, we can follow these steps: ### Step 1: Understand the formula for g The formula for calculating the acceleration due to gravity (g) using the period (T) of a simple pendulum is given by: \[ g = \frac{4\pi^2 L}{T^2} \] where \( L \) is the length of the pendulum and \( T \) is the period of oscillation. ### Step 2: Calculate g for each student ...
Promotional Banner

Topper's Solved these Questions

  • DIMENSIONS & MEASUREMENT

    CENGAGE PHYSICS ENGLISH|Exercise Multiple correct Answer Type|8 Videos
  • DIMENSIONS & MEASUREMENT

    CENGAGE PHYSICS ENGLISH|Exercise Integer|2 Videos
  • DIMENSIONS & MEASUREMENT

    CENGAGE PHYSICS ENGLISH|Exercise Fill In The Blanks|4 Videos
  • CENTRE OF MASS

    CENGAGE PHYSICS ENGLISH|Exercise INTEGER_TYPE|1 Videos
  • FLUID MECHANICS

    CENGAGE PHYSICS ENGLISH|Exercise INTEGER_TYPE|1 Videos

Similar Questions

Explore conceptually related problems

IUPAC name of CH_(3)-underset(O)underset(||)(C)-underset(CH_(3))underset(|)underset(C=O)underset(|)(CH)-underset(O)underset(||)(C)-OCH_(3)

underset(OH)underset(|)CH(2)-underset(O)underset(||)C-underset(OH)underset(|)CH-underset(OH)underset(|)CH_(2)overset(HlO_(4))to products Products are:

Which of the following names are not correct for the given compound : underset(CHO)underset(|)(CH_(2))-underset(CHO)underset(|)(CH)-underset(CHO)underset(|)(CH_(2))

Students J_(1) , J_(2) , J_(3) and J_(4) perform an experiment for measuring the acceleration due to gravity (g) using a simple pendulum, they use different lengths of the pendulum and record time for different number of oscillations. The observations are shown in the table. Least count for length = 0.1 cm , least count for time = 1s {:("Students",underset("pendulum (cm)")("Length of the"),underset("oscillations(n)")("No.of"),underset("of pendulum (s)")("Time period")),(I_(1),100.0,20,20),(J_(1),400.0,10,40),(J_(1),100.0,10,20),(I_(1),400.0,20,40):} If P_(1),P_(2),P_(3) and P_(4) are the % error in g for students J_(1) , J_(2) , J_(3) and J_(4) respectively then -

The IUPAC name of CH_(3)-underset(OH)underset(|)(CH)-CH=underset(CH_(3))underset(|)(C )-CHO is

Which of the following names is correct for underset(CHO)underset(|)(C)H_(2)-underset(CHO)underset(|)(C)H-underset(CHO)underset(|)(C)H_(2) ?

The IUPAC name the compound CH_(3)-underset(OH)underset(|)(CH)-underset(OH)underset(|)(CH)-underset(OH)underset(|)(CH_(2)) is

Write the I.U.P.A.C. names of the following compounds: H-underset(H)underset(|)overset(H)overset(|)C-underset(H)underset(|)overset(OH)overset(|)C-underset(H)underset(|)overset(H)overset(|)C-underset(H)underset(|)overset(H)overset(|)C-H

The correct name of CH_(3)CH_(2)-underset(O)underset(||)(C)-underset(CN)underset(|)(C)H-CHO is