Home
Class 11
PHYSICS
If vec(A)=2hat(i)+3hat(j)-hat(k) and vec...

If `vec(A)=2hat(i)+3hat(j)-hat(k)` and `vec(B)=-hat(i)+3hat(j)+4hat(k)`, then find the projection of `vec(A)` on `vec(B)`.

Text Solution

AI Generated Solution

To find the projection of vector \(\vec{A}\) on vector \(\vec{B}\), we can use the formula for the projection of one vector onto another. The projection of vector \(\vec{A}\) onto vector \(\vec{B}\) is given by: \[ \text{proj}_{\vec{B}} \vec{A} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|^2} \vec{B} \] Where: - \(\vec{A} \cdot \vec{B}\) is the dot product of vectors \(\vec{A}\) and \(\vec{B}\). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Subjective|28 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Single Correct|51 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.1|19 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS ENGLISH|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

Knowledge Check

  • If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

    A
    3
    B
    4
    C
    5
    D
    1
  • If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

    A
    `(5 sqrt(6))/(3)`
    B
    `(5)/(sqrt(6))`
    C
    `(5)/(sqrt(6))`
    D
    `5 sqrt(6)`
  • Similar Questions

    Explore conceptually related problems

    Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

    If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

    vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

    If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

    vec(A)=(hat(i)-2hat(j)+6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) , find the cross product between vec(A) and vec(B) .

    If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)