Home
Class 11
PHYSICS
Find the torque of the force vec(F)=(2ha...

Find the torque of the force `vec(F)=(2hat(i)-3hat(j)+4hat(k))` N acting at the point `vec(r )=(3hat(i)=2hat(j)+3hat(k))`m about the origion.

Text Solution

AI Generated Solution

To find the torque \(\vec{\tau}\) of the force \(\vec{F} = (2\hat{i} - 3\hat{j} + 4\hat{k})\) N acting at the point \(\vec{r} = (3\hat{i} + 2\hat{j} + 3\hat{k})\) m about the origin, we use the formula for torque: \[ \vec{\tau} = \vec{r} \times \vec{F} \] ### Step 1: Write down the vectors We have: ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Subjective|28 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Single Correct|51 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.1|19 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS ENGLISH|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

Find the torque of a force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(R)=7hat(i)+3hat(j)+hat(k) .

The torque of force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(r)=7hat(i)+3hat(j)+hat(k) is ______________?

Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

The torque of a force F = -2 hat(i) +2 hat(j) +3 hat(k) acting on a point r = hat(i) - 2 hat(j)+hat(k) about origin will be

Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k) on the vector vec(Q) = hat(i) + 2hat(j) + 2hat(k)

Find the scalar and vector products of two vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)) and vec(b)= (hat(i)-2hat(j)+3hat(k)) .

The torque of force F = -3 hat(i)+hat(j) + 5 hat(k) acting on a point r = 7 hat(i) + 3 hat(j) + hat(k) about origin will be

Find the scalar and vector products of two vectors vec(A)=(3hat(i)-4hat(j)+5hat(k)) "and" vec(B)=(-2hat(i)+hat(j)-3hat(k)) .

Find the image of the point having position vector hat(i) + 3hat(j) + 4hat(k) in the plane vec(r ).(2hat(i) - hat(j) + hat(k))+ 3=0

Find the direction cosines of the vector vec(F) = 4hat(i) + 3hat(j) + 2 hat(k)