Home
Class 11
PHYSICS
Given |vec(A)(1)|=2,|vec(A)(2)|=3 and |v...

Given `|vec(A)_(1)|=2,|vec(A)_(2)|=3` and `|vec(A)_(1)+vec(A)_(2)|=3`. Find the value of `(vec(A)_(1)+2vec(A)_(2)).(3vec(A)_(1)-4vec(A)_(2))`.

A

-64

B

60

C

-60

D

64

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \((\vec{A}_1 + 2\vec{A}_2) \cdot (3\vec{A}_1 - 4\vec{A}_2)\) given the magnitudes of \(\vec{A}_1\) and \(\vec{A}_2\) and the magnitude of their sum. ### Step 1: Write down the given information We have: - \(|\vec{A}_1| = 2\) - \(|\vec{A}_2| = 3\) - \(|\vec{A}_1 + \vec{A}_2| = 3\) ### Step 2: Use the formula for the magnitude of the sum of two vectors The magnitude of the sum of two vectors can be expressed as: \[ |\vec{A}_1 + \vec{A}_2|^2 = |\vec{A}_1|^2 + |\vec{A}_2|^2 + 2 |\vec{A}_1| |\vec{A}_2| \cos \theta \] where \(\theta\) is the angle between \(\vec{A}_1\) and \(\vec{A}_2\). ### Step 3: Substitute the known values into the formula Substituting the known values: \[ 3^2 = 2^2 + 3^2 + 2 \cdot 2 \cdot 3 \cos \theta \] This simplifies to: \[ 9 = 4 + 9 + 12 \cos \theta \] \[ 9 = 13 + 12 \cos \theta \] ### Step 4: Solve for \(\cos \theta\) Rearranging the equation: \[ 12 \cos \theta = 9 - 13 \] \[ 12 \cos \theta = -4 \] \[ \cos \theta = -\frac{1}{3} \] ### Step 5: Calculate the dot product Now we need to find the dot product \((\vec{A}_1 + 2\vec{A}_2) \cdot (3\vec{A}_1 - 4\vec{A}_2)\). Using the distributive property of the dot product: \[ (\vec{A}_1 + 2\vec{A}_2) \cdot (3\vec{A}_1 - 4\vec{A}_2) = \vec{A}_1 \cdot (3\vec{A}_1) + \vec{A}_1 \cdot (-4\vec{A}_2) + 2\vec{A}_2 \cdot (3\vec{A}_1) + 2\vec{A}_2 \cdot (-4\vec{A}_2) \] ### Step 6: Simplify the expression Calculating each term: 1. \(\vec{A}_1 \cdot (3\vec{A}_1) = 3|\vec{A}_1|^2 = 3 \cdot 4 = 12\) 2. \(\vec{A}_1 \cdot (-4\vec{A}_2) = -4 \vec{A}_1 \cdot \vec{A}_2\) 3. \(2\vec{A}_2 \cdot (3\vec{A}_1) = 6 \vec{A}_2 \cdot \vec{A}_1\) 4. \(2\vec{A}_2 \cdot (-4\vec{A}_2) = -8 |\vec{A}_2|^2 = -8 \cdot 9 = -72\) Combining these: \[ = 12 - 4 \vec{A}_1 \cdot \vec{A}_2 + 6 \vec{A}_2 \cdot \vec{A}_1 - 72 \] \[ = 12 + 2 \vec{A}_1 \cdot \vec{A}_2 - 72 \] ### Step 7: Substitute \(\vec{A}_1 \cdot \vec{A}_2\) Now, we need to find \(\vec{A}_1 \cdot \vec{A}_2\): \[ \vec{A}_1 \cdot \vec{A}_2 = |\vec{A}_1| |\vec{A}_2| \cos \theta = 2 \cdot 3 \cdot \left(-\frac{1}{3}\right) = -2 \] ### Step 8: Substitute back into the expression Substituting \(\vec{A}_1 \cdot \vec{A}_2 = -2\): \[ = 12 + 2(-2) - 72 \] \[ = 12 - 4 - 72 \] \[ = 8 - 72 = -64 \] ### Final Answer Thus, the value of \((\vec{A}_1 + 2\vec{A}_2) \cdot (3\vec{A}_1 - 4\vec{A}_2)\) is \(-64\).

To solve the problem step by step, we need to find the value of \((\vec{A}_1 + 2\vec{A}_2) \cdot (3\vec{A}_1 - 4\vec{A}_2)\) given the magnitudes of \(\vec{A}_1\) and \(\vec{A}_2\) and the magnitude of their sum. ### Step 1: Write down the given information We have: - \(|\vec{A}_1| = 2\) - \(|\vec{A}_2| = 3\) - \(|\vec{A}_1 + \vec{A}_2| = 3\) ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Multiple Correct|5 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Subjective|28 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS ENGLISH|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

|vec(a)|=2, |vec(b)|=3 and vec(a).vec(b)= -8 , then the value of |vec(a) + 3vec(b)| is

If vec(v)_(1)+vec(v)_(2) is perpendicular to vec(v)_(1)-vec(v)_(2) , then

If vec(a_(1)) and vec(a_(2)) are two non-collinear unit vectors and if |vec(a_(1)) + vec(a_(2))|=sqrt(3) , then the value of (vec(a_(1))-vec(a_(2))). (2 vec(a_(1))+vec(a_(2))) is :

If |vec(A)| = 4N, |vec(B)| = 3N the value of |vec(A) xx vec(B)|^(2) + |vec(A).vec(B)|^(2) =

If vec(E)_(1) and vec(E)_(2) are electric field at axial point and equatorial point of an electric dipole, then (1) vec(E)_(1).vec(E)_(2)gt 0 (2) vec(E)_(1).vec(E)_(2)=0 (3) vec(E)_(1).vec(E)_(2)lt 0 (4) vec(E)_(1)+vec(E)_(2)=vec(0)

If | vec a|=2| vec b|=5 and | vec axx vec b|=8, then find the value of vec a . vec bdot

If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10 , then | vec(a). vec(b) |^(2) is equal to

If vec(a) and vec(b) are two vectors such that |vec(a)|= 2, |vec(b)| = 3 and vec(a)*vec(b)=4 then find the value of |vec(a)-vec(b)|

If |vec(a) xx vec(b)|^(2) + |vec(a) .vec(b)|^(2) = 400 and |vec(a)| = 5 , then write the value of |vec(b)| .

If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2 , then | vec( a) |^(2) | vec( b) | ^(2) is equal to

CENGAGE PHYSICS ENGLISH-VECTORS-Exercise Single Correct
  1. If |vec(A)+vec(B)|=|vec(A)|=|vec(B)| then the angle between vec(A) and...

    Text Solution

    |

  2. If vectors A=hati+2hatj+4hatk and B=5hati represent the two sides of a...

    Text Solution

    |

  3. Given |vec(A)(1)|=2,|vec(A)(2)|=3 and |vec(A)(1)+vec(A)(2)|=3. Find th...

    Text Solution

    |

  4. Three vector vec(A),vec(B), vec(C ) satisfy the relation vec(A)*vec(B)...

    Text Solution

    |

  5. If vec(A)=vec(B)+vec(C ), and the magnitudes of vec(A),vec(B),vec(C ) ...

    Text Solution

    |

  6. Let A=hatiA cos theta+hatj A sin theta be any vector .Another vector B...

    Text Solution

    |

  7. The angle which the vector vec(A)=2hat(i)+3hat(j) makes with the y-axi...

    Text Solution

    |

  8. Given vec(P)=3hat(i)-4hat(j). Which of the following is perpendicular ...

    Text Solution

    |

  9. In going from one city to another, a car travels 75km north, 60km nort...

    Text Solution

    |

  10. What is the angle between vec(A) and vec(B), If vec(A) and vec(B) are ...

    Text Solution

    |

  11. Two vectors vec(a) and vec(b) are such that |vec(a)+vec(b)|=|vec(a)-ve...

    Text Solution

    |

  12. Given vec(A)=4hat(i)+6hat(j) and vec(B)=2hat(i)+3hat(j). Which of the ...

    Text Solution

    |

  13. Given vec(A)=2hat(i)+phat(j)+qhat(k) and vec(B)=5hat(i)+7hat(j)+3hat(k...

    Text Solution

    |

  14. If vec(A) is perpendicular to vec(B), then

    Text Solution

    |

  15. If the angle between the vectors vec(a) and vec(b) is an acute angle, ...

    Text Solution

    |

  16. Given that vec(A)+vec(B)=vec(C ). If |vec(A)|=4, |vec(B)|=5 and |vec(C...

    Text Solution

    |

  17. If vec(b)=3hat(i)+4hat(j) and vec(a)=hat(i)-hat(j) the vector having t...

    Text Solution

    |

  18. Choose the wrong statement.

    Text Solution

    |

  19. What displacement at an angle 60^(@) to the x-axis has an x-component ...

    Text Solution

    |

  20. Mark the correct statement.

    Text Solution

    |