Home
Class 11
PHYSICS
Given vec(A)=2hat(i)+phat(j)+qhat(k) and...

Given `vec(A)=2hat(i)+phat(j)+qhat(k)` and `vec(B)=5hat(i)+7hat(j)+3hat(k)`. If `vec(A)||vec(B)`, then the values of p and q are, respectively,

A

`14/5and6/5`

B

`14/3 and 6/5`

C

`6/5 and 1/3`

D

`3/4 and 1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( p \) and \( q \) such that the vectors \( \vec{A} \) and \( \vec{B} \) are parallel. Two vectors are parallel if their cross product is equal to zero. Given: \[ \vec{A} = 2\hat{i} + p\hat{j} + q\hat{k} \] \[ \vec{B} = 5\hat{i} + 7\hat{j} + 3\hat{k} \] ### Step 1: Set up the cross product The cross product \( \vec{A} \times \vec{B} \) can be calculated using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of the vectors \( \vec{A} \) and \( \vec{B} \): \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & p & q \\ 5 & 7 & 3 \end{vmatrix} \] ### Step 2: Calculate the determinant Using the determinant formula, we can expand this as follows: \[ \vec{A} \times \vec{B} = \hat{i} \begin{vmatrix} p & q \\ 7 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & q \\ 5 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & p \\ 5 & 7 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} p & q \\ 7 & 3 \end{vmatrix} = p \cdot 3 - q \cdot 7 = 3p - 7q \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 2 & q \\ 5 & 3 \end{vmatrix} = 2 \cdot 3 - q \cdot 5 = 6 - 5q \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 2 & p \\ 5 & 7 \end{vmatrix} = 2 \cdot 7 - p \cdot 5 = 14 - 5p \] Putting it all together, we have: \[ \vec{A} \times \vec{B} = (3p - 7q)\hat{i} - (6 - 5q)\hat{j} + (14 - 5p)\hat{k} \] ### Step 3: Set the cross product to zero For the vectors to be parallel, the cross product must equal zero: \[ 3p - 7q = 0 \quad (1) \] \[ 6 - 5q = 0 \quad (2) \] \[ 14 - 5p = 0 \quad (3) \] ### Step 4: Solve the equations From equation (2): \[ 6 - 5q = 0 \implies 5q = 6 \implies q = \frac{6}{5} \] Substituting \( q \) into equation (1): \[ 3p - 7\left(\frac{6}{5}\right) = 0 \] \[ 3p - \frac{42}{5} = 0 \implies 3p = \frac{42}{5} \implies p = \frac{42}{15} = \frac{14}{5} \] From equation (3): \[ 14 - 5p = 0 \implies 5p = 14 \implies p = \frac{14}{5} \] ### Final Result Thus, the values of \( p \) and \( q \) are: \[ p = \frac{14}{5}, \quad q = \frac{6}{5} \]

To solve the problem, we need to find the values of \( p \) and \( q \) such that the vectors \( \vec{A} \) and \( \vec{B} \) are parallel. Two vectors are parallel if their cross product is equal to zero. Given: \[ \vec{A} = 2\hat{i} + p\hat{j} + q\hat{k} \] \[ \vec{B} = 5\hat{i} + 7\hat{j} + 3\hat{k} ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Multiple Correct|5 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Subjective|28 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS ENGLISH|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) what is vec(F) . vec(v) ?

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If (2hat(i)+6hat(j)+ 27hat(k))xx(hat(i)+phat(j)+qhat(k))=vec(0) , then the values of p and q are ?

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

CENGAGE PHYSICS ENGLISH-VECTORS-Exercise Single Correct
  1. Two vectors vec(a) and vec(b) are such that |vec(a)+vec(b)|=|vec(a)-ve...

    Text Solution

    |

  2. Given vec(A)=4hat(i)+6hat(j) and vec(B)=2hat(i)+3hat(j). Which of the ...

    Text Solution

    |

  3. Given vec(A)=2hat(i)+phat(j)+qhat(k) and vec(B)=5hat(i)+7hat(j)+3hat(k...

    Text Solution

    |

  4. If vec(A) is perpendicular to vec(B), then

    Text Solution

    |

  5. If the angle between the vectors vec(a) and vec(b) is an acute angle, ...

    Text Solution

    |

  6. Given that vec(A)+vec(B)=vec(C ). If |vec(A)|=4, |vec(B)|=5 and |vec(C...

    Text Solution

    |

  7. If vec(b)=3hat(i)+4hat(j) and vec(a)=hat(i)-hat(j) the vector having t...

    Text Solution

    |

  8. Choose the wrong statement.

    Text Solution

    |

  9. What displacement at an angle 60^(@) to the x-axis has an x-component ...

    Text Solution

    |

  10. Mark the correct statement.

    Text Solution

    |

  11. Out of the following forces, the resultant of which cannot be 10N?

    Text Solution

    |

  12. Which of the following pairs of forces cannot be added to give a resul...

    Text Solution

    |

  13. In an equilateral triangle ABC, AL, BM, and CN are medians. Forces alo...

    Text Solution

    |

  14. The sum of two vectors A and B is at right angles to their difference....

    Text Solution

    |

  15. If a parallelogram is formed with two sides represented by vector vec(...

    Text Solution

    |

  16. Given that vec(A)+vec(B)=vec(C ) and that vec(C ) is perpendicular to ...

    Text Solution

    |

  17. Two forces vec(F)(1)=500N due east and vec(F)(2)=250N due north have t...

    Text Solution

    |

  18. Find the resultant of the three vectors vec(OA), vec(OB) and vec(OC) s...

    Text Solution

    |

  19. Two vectors vec(a) and vec(b) are at an angle of 60^(@) with each othe...

    Text Solution

    |

  20. The resultant of two vectors vec(P) and vec(Q) is vec(R). If vec(Q) is...

    Text Solution

    |