Home
Class 11
PHYSICS
If vec(A)=2hat(i)+hat(j)+hat(k) and vec(...

If `vec(A)=2hat(i)+hat(j)+hat(k)` and `vec(B)=hat(i)+hat(j)+hat(k)` are two vectors, then the unit vector is

A

Perpendicular to `vec(A)` is `(-hat(j)+hat(k))1/sqrt(2)`

B

Parallel to `vec(A)` is `(2hat(i)+hat(j)+hat(k))/sqrt(6)`

C

Perpendicular to `vec(B)` is `((-hat(j)+hat(k))/sqrt(2))`

D

Parallel to `vec(A)` is `(hat(i)+hat(j)+hat(k))/sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector of the given vector \(\vec{A}\), we can follow these steps: ### Step 1: Identify the vector Given: \[ \vec{A} = 2\hat{i} + \hat{j} + \hat{k} \] ### Step 2: Calculate the magnitude of \(\vec{A}\) The magnitude of a vector \(\vec{A} = a\hat{i} + b\hat{j} + c\hat{k}\) is given by: \[ |\vec{A}| = \sqrt{a^2 + b^2 + c^2} \] For \(\vec{A}\): - \(a = 2\) - \(b = 1\) - \(c = 1\) Calculating the magnitude: \[ |\vec{A}| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] ### Step 3: Find the unit vector \(\hat{A}\) The unit vector \(\hat{A}\) in the direction of \(\vec{A}\) is given by: \[ \hat{A} = \frac{\vec{A}}{|\vec{A}|} \] Substituting the values: \[ \hat{A} = \frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}} \] ### Step 4: Write the final expression for the unit vector Thus, the unit vector \(\hat{A}\) is: \[ \hat{A} = \frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}} \] ### Final Answer The unit vector \(\hat{A}\) is: \[ \hat{A} = \frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}} \] ---

To find the unit vector of the given vector \(\vec{A}\), we can follow these steps: ### Step 1: Identify the vector Given: \[ \vec{A} = 2\hat{i} + \hat{j} + \hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Single Correct|51 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS ENGLISH|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(P)=hat(i)+hat(j)-hat(k) and vec(Q)=hat(i)-hat(j)+hat(k) , then unit vector along (vec(P)-vec(Q)) is :

If the vectors given by vec(A) = hat(i) + 2hat(j) + 2hat(k) and vec(B) = hat(i) - hat(j) + n hat(k) are prerpendicular to each other find the value of n .

If vec(a) = hat(i) + hat(j) + 2 hat(k) , vec(b) = 2 hat(j) + hat(k) and vec (c) = hat(i) + hat(j) + hat(k) . Find a unit vector perpendicular to the plane containing vec(a), vec(b), vec(c)

Consider three vectors vec(A)=2 hat(i)+3 hat(j)-2 hat(k)" " vec(B)=5hat(i)+nhat(j)+hat(k)" " vec(C)=-hat(i)+2hat(j)+3 hat(k) If these three vectors are coplanar, then value of n will be

If vec a=x hat i+2 hat j-\ z hat k and vec b=3 hat i-\ y hat j+ hat k are two equal vectors, then write the value of x+y+zdot

If vec a=x hat i+2 hat j-z hat k\ and vec b=3 hat i-y hat j+ hat k are two equal vectors, then write the value of x+y+zdot

The value of lambda for which the two vectors vec(a) = 5hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + hat(k) are perpendicular to each other is :

If vec(a) = hat(i) + hat(j) + hat(k), vec(a).vec(b) =1 and vec(a) xx vec(b) = hat(j)-hat(k) , then the vector vec(b) is

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :