Home
Class 11
PHYSICS
A particle of mass m is projected with a...

A particle of mass `m` is projected with a speed `u` at an angle `theta` to the horizontal at time `t = 0`. Find its angular momentum about the point of projection `O` at time `t`, vectorially. Assume the horizontal and vertical lines through `O` as `X` and `Y` axes, respectively.

Text Solution

AI Generated Solution

To find the angular momentum of a particle of mass `m` projected with an initial speed `u` at an angle `theta` to the horizontal at time `t`, we will follow these steps: ### Step 1: Determine the position vector of the particle at time `t` The position of the particle at time `t` can be described using the horizontal and vertical components of the motion. - The horizontal displacement \( x \) is given by: \[ x = u \cos(\theta) t ...
Promotional Banner

Topper's Solved these Questions

  • RIGID BODY DYNAMICS 2

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.3|21 Videos
  • RIGID BODY DYNAMICS 2

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.4|13 Videos
  • RIGID BODY DYNAMICS 2

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.1|11 Videos
  • RIGID BODY DYNAMICS 1

    CENGAGE PHYSICS ENGLISH|Exercise Integer|11 Videos
  • SOUND WAVES AND DOPPLER EFFECT

    CENGAGE PHYSICS ENGLISH|Exercise Integer|16 Videos

Similar Questions

Explore conceptually related problems

A particle of mass m is projected with velocity v at an angle theta with the horizontal. Find its angular momentum about the point of projection when it is at the highest point of its trajectory.

A body of mass m is projected with intial speed u at an angle theta with the horizontal. The change in momentum of body after time t is :-

A body of mass m is projected with a velocity u at an angle theta with the horizontal. The angular momentum of the body, about the point of projection, when it at highest point on its trajectory is

A particle of mass m is projected with speed u at an angle theta with the horizontal. Find the torque of the weight of the particle about the point of projection when the particle is at the highest point.

A particle of mass m is projected with speed u at an angle theta with the horizontal. Find the torque of the weight of the particle about the point of projection when the particle is at the highest point.

A particle of mass m is projected with a velocity v at an angle of theta with horizontal. The angular momentum of the particle at the highest point of its trajectory is equal to :

If a particle of mass m is thrown with speed at an angle 60° with horizontal, then angular momentum of particle at highest point about point of projection is

A particle is projected with speed u at angle theta to the horizontal. Find the radius of curvature at highest point of its trajectory

A particle of mass m is projected with speed u at angle theta with horizontal from ground. The work done by gravity on it during its upward motion is

A particle is projected with initaial velocity u at an angle 0 with horizontal, then variation of angular momentum L about starting w.r.t. Time t will be