Home
Class 12
PHYSICS
An electric field is given by E=(y hat(i...

An electric field is given by `E=(y hat(i)+ xhat(k))N//C`. Work done in moving a 1C charge from `r_(A)=(2hat(i)+2hat(j))m` to `r_(B)=(4hat(i)+hat(j))m` is

Text Solution

Verified by Experts

The correct Answer is:
0

`W=q int_(vecr_(A))^(vecr_(B)) vec(E )* dvec(r )=1xxint_(2,2)^(4,1) (E_(x)dx+E_(y)dy)`
`=1xxint_(2,2)^(4,1)(y dx+x dy)= int_(2,2)^(4,1)d(xy)`
`[xy]_(2,2)^(4,1)=4xx1-2xx2=0`.
Promotional Banner

Topper's Solved these Questions

  • COULOMB LAW AND ELECTRIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise Single Correct Ansewr Type|20 Videos
  • COULOMB LAW AND ELECTRIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • COULOMB LAW AND ELECTRIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise Comprehension|25 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise subjective type|51 Videos
  • ELECTRIC CURRENT & CIRCUITS

    CENGAGE PHYSICS ENGLISH|Exercise Kirchhoff s law and simple circuits|15 Videos

Similar Questions

Explore conceptually related problems

An electric field is given by vec(E)=(yhat(i)+xhat(j))N/C . Find the work done (in J) in moving a 1 C charge from vec(r)_(A)=(2hat(i)+2hat(j)) m to vec(r)_(B)=(4hat(i)+hat(j))m .

Find V_(ab) in an electric field vec(E)=(2hat(i)+3hat(j)+4hat(k))N//C where vec(r)_(a)=(hat(i)-2hat(j)+hat(k))mandvec(r_(b))=(2hat(i)+hat(j)-2hat(k))m

The work done by the force vec( F ) = 6 hat(i) + 2 hat(j) N in displacing an object from vec( r_(1)) = 3 hat(i) + 8 hat( j) to vec( r_(2)) = 5 hat( i) - 4 hat(j) m , is

Find V_(ab) in an electric fiels vec E = (2 hat I + 3 hat j + 4 hat k) NC^-1 where vec r_a = (hat I - 2 hat j + hat k) m and vec r_b = (2 hat i + hat j - 2 hat k) m .

The position vectors of three particles of mass m_(1) = 1kg, m_(2) = 2kg and m_(3) = 3kg are r_(1) = ((hat(i) + 4hat(j) +hat(k)) m, r_(2) = ((hat(i)+(hat(j)+hat(k)) m and r_(3) = (2hat(i) - (hat(j) -(hat(2k)) m, respectively. Find the position vector of their center of mass.

The angle between the lines overset(to)( r)=(4 hat(i) - hat(j) )+ lambda(2 hat(i) + hat(j) - 3hat(k) ) and overset(to) (r )=( hat(i) -hat(j) + 2 hat(k) ) + mu (hat(i) - 3 hat(j) - 2 hat(k) ) is

If angle bisector of overline(a) = 2hat(i) + 3 hat(j) + 4 hat(k) and overline(b) = 4hat(i) - 2 hat(j) + 3 hat(k) is overline(c ) = alpha hat(i) + 2 hat(j) + beta hat(k) then

Angle between the vectors vec(a)=-hat(i)+2hat(j)+hat(k) and vec(b)=xhat(i)+hat(j)+(x+1)hat(k)

Find the projection of vec(b)+ vec(c ) on vec(a) where vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)

Determine lambda such that a vector vec(r) is at right angles to each of the vectors vec(a) = lambda hat(i) + hat(j) + 3hat(k), vec(b) = 2hat(i) + hat(j) - lambda hat(k), vec(c) = -2hat(i) + lambda hat(j) + 3hat(k) .