Home
Class 12
PHYSICS
Find the potential difference V(AB) betw...

Find the potential difference `V_(AB)` between `A (0,0,0) and B (1 m , 1 m,1 m)` in an electric field :
(i) `vec E = (y hat i + x hat j) Vm^-1`
(ii) `vec E = (3 x^2 y hat i + x^3 hat j) Vm^-1`.

Text Solution

AI Generated Solution

To find the potential difference \( V_{AB} \) between points \( A(0,0,0) \) and \( B(1,1,1) \) in the given electric fields, we will use the formula for the potential difference in a non-uniform electric field: \[ V_{AB} = -\int_A^B \vec{E} \cdot d\vec{r} \] where \( \vec{E} \) is the electric field and \( d\vec{r} \) is the differential displacement vector. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELECTRIC POTENTIAL

    CENGAGE PHYSICS ENGLISH|Exercise Examples|9 Videos
  • ELECTRIC POTENTIAL

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.1|23 Videos
  • ELECTRIC FLUX AND GAUSS LAW

    CENGAGE PHYSICS ENGLISH|Exercise MCQ s|38 Videos
  • ELECTRICAL MEASURING INSTRUMENTS

    CENGAGE PHYSICS ENGLISH|Exercise M.C.Q|2 Videos

Similar Questions

Explore conceptually related problems

The potential field of an electric field vec(E)=(y hat(i)+x hat(j)) is

Find the potential V of an electrostatic field vec E = a(y hat i + x hat j) , where a is a constant.

Knowledge Check

  • The potential field of an electric field vec(E)=(y hat(i)+x hat(j)) is

    A
    V = -(x+y) + constant
    B
    V = constant
    C
    `V = -(x^(2)+y^(2)) + " constant"`
    D
    V = -xy + constant
  • Similar Questions

    Explore conceptually related problems

    Potential difference between two points (V_(A) - V_(B)) in an electric field E = (2 hat(i) - 4 hat(j)) N//C , where A = (0, 0) and B = (3m, 4m) is

    Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat kdot

    Charge Q is given a displacement vec r = a hat i + b hat j in an electric field vec E = E_1 hat i + E_2 hat j . The work done is.

    An electric dipole moment vec P = ( 2. 0 hat I + 3 . 0 hat j) mu C m is placed in a uniform electric field vec E = (3 hat I + 2 . 0hat k ) xx 10^5 N C^(-1) .

    Find V_(ab) in an electric fiels vec E = (2 hat I + 3 hat j + 4 hat k) NC^-1 where vec r_a = (hat I - 2 hat j + hat k) m and vec r_b = (2 hat i + hat j - 2 hat k) m .

    Find | vec a xx vec b|, if vec a=2 hat i+ hat j+3 hat k and vec b=3 hat i+5 hat j-2 hat k .

    Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat k