Home
Class 12
PHYSICS
Photoelectric threshold of silver is lam...

Photoelectric threshold of silver is `lamda=3800A`. Ultraviolet light of `lamda=2600A` is incident of a silver surface. Calculate:
a. the value of work function in joule and in eV.
b. maximum kinetic energy of the emitted photoelectrons.
c. the maximum velocity of the photoelectrons.
(Mass of the electrons`=9.11xx10^(-31)`).

A

`71.89xx10^(8)`

B

`57.89xx10^(8)`

C

`42.93xx10^(8)`

D

`68.26xx10^(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will address each part of the question systematically. ### Given Data: - Threshold wavelength of silver, \( \lambda_0 = 3800 \, \text{Å} = 3800 \times 10^{-10} \, \text{m} \) - Incident wavelength of ultraviolet light, \( \lambda = 2600 \, \text{Å} = 2600 \times 10^{-10} \, \text{m} \) - Mass of electron, \( m = 9.11 \times 10^{-31} \, \text{kg} \) - Planck's constant, \( h = 6.626 \times 10^{-34} \, \text{Js} \) - Speed of light, \( c = 3 \times 10^8 \, \text{m/s} \) - Charge of electron, \( e = 1.6 \times 10^{-19} \, \text{C} \) ### Part (a): Calculate the Work Function in Joules and eV 1. **Calculate the work function (φ)**: \[ \phi = \frac{hc}{\lambda_0} \] Substituting the values: \[ \phi = \frac{(6.626 \times 10^{-34} \, \text{Js})(3 \times 10^8 \, \text{m/s})}{3800 \times 10^{-10} \, \text{m}} \] \[ \phi = \frac{1.9878 \times 10^{-25}}{3.8 \times 10^{-7}} \approx 5.23 \times 10^{-19} \, \text{J} \] 2. **Convert the work function to electron volts (eV)**: \[ \phi \, (\text{eV}) = \frac{\phi \, (\text{J})}{e} = \frac{5.23 \times 10^{-19} \, \text{J}}{1.6 \times 10^{-19} \, \text{C}} \approx 3.27 \, \text{eV} \] ### Part (b): Calculate the Maximum Kinetic Energy of the Emitted Photoelectrons 1. **Calculate the energy of the incident photon (E)**: \[ E = \frac{hc}{\lambda} \] Substituting the values: \[ E = \frac{(6.626 \times 10^{-34} \, \text{Js})(3 \times 10^8 \, \text{m/s})}{2600 \times 10^{-10} \, \text{m}} \approx 7.65 \times 10^{-19} \, \text{J} \] 2. **Convert the energy to electron volts (eV)**: \[ E \, (\text{eV}) = \frac{7.65 \times 10^{-19} \, \text{J}}{1.6 \times 10^{-19} \, \text{C}} \approx 4.78 \, \text{eV} \] 3. **Calculate the maximum kinetic energy (KE_max)**: \[ KE_{\text{max}} = E - \phi \] Substituting the values: \[ KE_{\text{max}} = 4.78 \, \text{eV} - 3.27 \, \text{eV} \approx 1.51 \, \text{eV} \] ### Part (c): Calculate the Maximum Velocity of the Photoelectrons 1. **Use the kinetic energy formula**: \[ KE_{\text{max}} = \frac{1}{2} mv^2 \] Rearranging for \( v \): \[ v = \sqrt{\frac{2 \times KE_{\text{max}}}{m}} \] First, convert \( KE_{\text{max}} \) to Joules: \[ KE_{\text{max}} \, (\text{J}) = 1.51 \, \text{eV} \times 1.6 \times 10^{-19} \, \text{C} \approx 2.42 \times 10^{-19} \, \text{J} \] 2. **Substituting the values**: \[ v = \sqrt{\frac{2 \times 2.42 \times 10^{-19} \, \text{J}}{9.11 \times 10^{-31} \, \text{kg}}} \] \[ v = \sqrt{\frac{4.84 \times 10^{-19}}{9.11 \times 10^{-31}}} \approx \sqrt{5.30 \times 10^{11}} \approx 0.727 \times 10^6 \, \text{m/s} \] ### Summary of Results: - **Work Function (φ)**: \( 5.23 \times 10^{-19} \, \text{J} \) or \( 3.27 \, \text{eV} \) - **Maximum Kinetic Energy (KE_max)**: \( 1.51 \, \text{eV} \) - **Maximum Velocity (v)**: \( 0.727 \times 10^6 \, \text{m/s} \)

To solve the problem step by step, we will address each part of the question systematically. ### Given Data: - Threshold wavelength of silver, \( \lambda_0 = 3800 \, \text{Å} = 3800 \times 10^{-10} \, \text{m} \) - Incident wavelength of ultraviolet light, \( \lambda = 2600 \, \text{Å} = 2600 \times 10^{-10} \, \text{m} \) - Mass of electron, \( m = 9.11 \times 10^{-31} \, \text{kg} \) - Planck's constant, \( h = 6.626 \times 10^{-34} \, \text{Js} \) - Speed of light, \( c = 3 \times 10^8 \, \text{m/s} \) ...
Promotional Banner

Topper's Solved these Questions

  • PHOTOELECTRIC EFFECT

    CENGAGE PHYSICS ENGLISH|Exercise Linked Comprehension|44 Videos
  • PHOTOELECTRIC EFFECT

    CENGAGE PHYSICS ENGLISH|Exercise Integer|9 Videos
  • PHOTOELECTRIC EFFECT

    CENGAGE PHYSICS ENGLISH|Exercise Single Correct|130 Videos
  • NUCLEAR PHYSICS

    CENGAGE PHYSICS ENGLISH|Exercise ddp.5.5|14 Videos
  • RAY OPTICS

    CENGAGE PHYSICS ENGLISH|Exercise DPP 1.6|12 Videos

Similar Questions

Explore conceptually related problems

Photoelectric threshold of silver is lamda=3800A . Ultraviolet light of lamda=2600A is incident of a silver surface.(Mass of the electron 9.11xx10^(-31)kg ) 1. Calculate the value of work function is eV.

A photon of wavelength 5000 lambda strikes a metal surface with work function 2.20 eV calculate aTHe energy of the photon in eV b. The kinetic energy of the emitted photo electron c. The velocity of the photoelectron

Light of wavelength 2000Å is incident on a metal surface of work function 3.0 eV. Find the minimum and maximum kinetic energy of the photoelectrons.

A light of wavelength 600 nm is incident on a metal surface. When light of wavelength 400 nm is incident, the maximum kinetic energy of the emitted photoelectrons is doubled. The work function of the metals is

The photoeletric threshold 4v is incident on the metal is v. When light of freqency 4v is incident on the metal, the maximum kinetic energy of the emitted photoelectron is

Light of wavelength 400 nm strikes a certain metal which has a photoelectric work function of 2.13eV. Find out the maximum kinetic energy of the photoelectrons

Light of wavelength 4000A∘ is incident on a metal surface. The maximum kinetic energy of emitted photoelectron is 2 eV. What is the work function of the metal surface?

Light of wavelength 3000Å is incident on a metal surface whose work function is 1 eV. The maximum velocity of emitted photoelectron will be

The photoelectric threshold frequency of a metal is v. When light of frequency 4v is incident on the metal . The maximum kinetic energy of the emitted photoelectrons is

A light of intensity 16 mW and energy of each photon 10 eV incident on a metal plate of work function 5 eV and area 10^(-4)m^(2) then find the maximum kinetic energy of emitted electrons and the number of photoelectrons emitted per second if photon efficiency is 10% .