Home
Class 12
PHYSICS
Soppose potential energy between electro...

Soppose potential energy between electronand proton at seperation `r` is given by `U = klog r, where k` is a constant. For such a hypothetical hydrogen atom , calculate the radins of nth Bohr and its energy level

Text Solution

AI Generated Solution

To solve the problem, we will follow these steps: ### Step 1: Understand the Potential Energy The potential energy \( U \) between the electron and proton is given by: \[ U = k \log r \] where \( k \) is a constant and \( r \) is the separation between the electron and proton. ...
Promotional Banner

Topper's Solved these Questions

  • ATOMIC PHYSICS

    CENGAGE PHYSICS ENGLISH|Exercise Solved Examples|23 Videos
  • ATOMIC PHYSICS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 4.1|15 Videos
  • ALTERNATING CURRENT

    CENGAGE PHYSICS ENGLISH|Exercise Single Correct|10 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS ENGLISH|Exercise Integer|5 Videos

Similar Questions

Explore conceptually related problems

Assume a hypothetical hydrogen atom in which the potential energy between electron and proton at separation r is given by U = [k ln r - (k/2)], where k is a constant. For such a hypothetical hydrogen atom, calculate the radius of nth Bohr orbit and energy levels.

Suppose the potential energy between an electron and a proton at a distance r is given by Ke^(2)// 3 r^(3) . Application of Bohr's theory tohydrogen atom in this case showns that

In a hypothetical atom, potential energy between electron and proton at distance r is given by ((-ke^(2))/(4r^(2))) where k is a constant Suppose Bohr theory of atomic structrures is valid and n is principle quantum number, then total energy E is proportional to 1) n^5 2) n^2 3) n^6 4) n^4

The potential energy of a two particle system separated by a distance r is given by U(r ) =A/r where A is a constant. Find to the radial force F_(r) , that each particle exerts on the other.

If potential energy between a proton and an electron is given by | U | = k e^(2)//2 R^(3) , where e is the charge of electron and R is the radius of atom , that radius of Bohr's orbit is given by (h = Plank's constant, k = constant)

The potential energy function of a particle in the x-y plane is given by U =k(x+y) , where (k) is a constant. The work done by the conservative force in moving a particlae from (1,1) to (2,3) is .

The potential energy function of a particle is given by U(r)=A/(2r^(2))-B/(3r) , where A and B are constant and r is the radial distance from the centre of the force. Choose the correct option (s)

For hydrogen atom, energy of nth level is given by

The potential energy between two atoms in a molecule is given by U(x)= (a)/(x^(12))-(b)/(x^(6)) , where a and b are positive constants and x is the distance between the atoms. The atom is in stable equilibrium when

The potential of an atom is given by V=V_(0)log_(e)(r//r_(0)) where r_(0) is a constant and r is the radius of the orbit Assumming Bohr's model to be applicable, which variation of r_(n) with n is possible (n being proncipal quantum number)?