Home
Class 11
PHYSICS
A solid copper cube of edges 1 cm is sus...

A solid copper cube of edges 1 cm is suspended in an evacuated enclosure. Its temperature is found to fall from `100^@C` to `99^@C` in 100 s. Another solid copper cube of edges 2 cm, with similar surface nature, is suspended in a similar manner. The time required for this cube to cool from `100^@C` to `99^@C` will be approximately

A

25 s

B

50 s

C

200 s

D

400 s

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the time required for a larger copper cube (with edges of 2 cm) to cool from 100°C to 99°C, given that a smaller cube (with edges of 1 cm) takes 100 seconds to cool through the same temperature difference. ### Step-by-Step Solution: 1. **Identify the properties of the cubes**: - The first cube has a side length \( L_1 = 1 \, \text{cm} \). - The second cube has a side length \( L_2 = 2 \, \text{cm} \). - Both cubes are made of copper and have the same specific heat capacity \( C \) and density \( \rho \). 2. **Calculate the volume of each cube**: - Volume of the first cube: \[ V_1 = L_1^3 = 1^3 = 1 \, \text{cm}^3 \] - Volume of the second cube: \[ V_2 = L_2^3 = 2^3 = 8 \, \text{cm}^3 \] 3. **Determine the mass of each cube**: - Mass of the first cube: \[ m_1 = V_1 \cdot \rho = 1 \cdot \rho = \rho \, \text{g} \] - Mass of the second cube: \[ m_2 = V_2 \cdot \rho = 8 \cdot \rho = 8\rho \, \text{g} \] 4. **Calculate the heat lost by each cube**: - Heat lost by the first cube when cooling from 100°C to 99°C: \[ \Delta Q_1 = m_1 \cdot C \cdot \Delta T = \rho \cdot C \cdot 1 \] - Heat lost by the second cube: \[ \Delta Q_2 = m_2 \cdot C \cdot \Delta T = 8\rho \cdot C \cdot 1 \] 5. **Use the Stefan-Boltzmann law**: - The rate of heat loss is proportional to the surface area and the fourth power of the temperature. - Surface area of the first cube: \[ A_1 = 6L_1^2 = 6 \cdot 1^2 = 6 \, \text{cm}^2 \] - Surface area of the second cube: \[ A_2 = 6L_2^2 = 6 \cdot 2^2 = 24 \, \text{cm}^2 \] 6. **Set up the time equations**: - Time for the first cube to cool: \[ t_1 = \frac{\Delta Q_1}{A_1 \cdot \sigma \cdot T^4} = \frac{\rho C \cdot 1}{6 \cdot \sigma \cdot T^4} \] - Time for the second cube to cool: \[ t_2 = \frac{\Delta Q_2}{A_2 \cdot \sigma \cdot T^4} = \frac{8\rho C \cdot 1}{24 \cdot \sigma \cdot T^4} \] 7. **Relate the two times**: - From the equations, we can find the ratio of the two times: \[ \frac{t_1}{t_2} = \frac{\Delta Q_1 / (A_1 \cdot \sigma \cdot T^4)}{\Delta Q_2 / (A_2 \cdot \sigma \cdot T^4)} = \frac{\Delta Q_1 \cdot A_2}{\Delta Q_2 \cdot A_1} \] - Substituting the values: \[ \frac{100}{t_2} = \frac{\rho C \cdot 6}{8\rho C \cdot 1} \cdot \frac{24}{6} \] - Simplifying gives: \[ \frac{100}{t_2} = \frac{6 \cdot 24}{8 \cdot 1} = \frac{144}{8} = 18 \] - Therefore, \( t_2 = \frac{100}{18} \) which simplifies to: \[ t_2 = 200 \, \text{seconds} \] ### Final Answer: The time required for the second cube to cool from 100°C to 99°C is approximately **200 seconds**.

To solve the problem, we need to determine the time required for a larger copper cube (with edges of 2 cm) to cool from 100°C to 99°C, given that a smaller cube (with edges of 1 cm) takes 100 seconds to cool through the same temperature difference. ### Step-by-Step Solution: 1. **Identify the properties of the cubes**: - The first cube has a side length \( L_1 = 1 \, \text{cm} \). - The second cube has a side length \( L_2 = 2 \, \text{cm} \). - Both cubes are made of copper and have the same specific heat capacity \( C \) and density \( \rho \). ...
Promotional Banner

Topper's Solved these Questions

  • CALORIMETRY

    CENGAGE PHYSICS ENGLISH|Exercise Multiple Correct|25 Videos
  • CALORIMETRY

    CENGAGE PHYSICS ENGLISH|Exercise Comprehension|30 Videos
  • CALORIMETRY

    CENGAGE PHYSICS ENGLISH|Exercise Subjective|25 Videos
  • BASIC MATHEMATICS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 2.6|20 Videos
  • CENTRE OF MASS

    CENGAGE PHYSICS ENGLISH|Exercise INTEGER_TYPE|1 Videos

Similar Questions

Explore conceptually related problems

Two solid copper spheres of radii r_1=15cm and r_2=20cm are both at a temperature of 60^@ C. If the temperature of surrounding is 50^@C , then find a. The ratio of the heat loss per second from their surfaces initially. b. the ratio of rates of cooling initially.

A solid copper sphere (density rho and specific heat c) of radius r at an initial temperature 200K is suspended inside a chamber whose walls are at almost 0K. The time required for the temperature of the sphere to drop to 100K is …….

A metal rod of 30 cm length expands by 0.075 cm when its temperature is raised from 0^@C to 100^@C . Another rod of a different metal of length 45 cm expands by 0.045 cm for the same rise in temperature. A composite rod C made by joining A and B end to end expands by 0.040 cm when its length is 45 cm and it is heated from 0^@C to 50^@C . Find the length of each portion of the composite rod.

One face of a copper cube of edge 10 cm is maintained at 100^(@)C and the opposite face is maintained at 0^(@)C . All other surfaces are covered with an insulating material. Find the amount of heat flowing per second through the cube. Thermal conductivity of copper is 385Wm^(-1) C^(-1) .

Calculate the amount of heat energy required to raise the temperature of 100 g of copper from 20^@ C to 70^@ C. Specific heat capacity of copper = 390 J kg^(-1) K^(-1)

A thin copper wire of length l increases in length by 1% when heated from 0^(@)C to 100^(@)C . If a then copper plate of area 2lxxl is heated from 0^(@)C to 100^(@)C , the percentage increases in its area will be

A solid copper sphere of density rho , specific heat c and radius r is at temperature T_1 . It is suspended inside a chamber whose walls are at temperature 0K . What is the time required for the temperature of sphere to drop to T_2 ? Take the emmissivity of the sphere to be equal to e.

A cube of mass 1 kg and volume 125cm^2 is placed in an evacuated chamber at 27^@C . Initially temperature of block is 227^@C . Assume block behaves like a block body, find the rate of cooling of block if specific heat of the material of block is 400 J//kg-K .

The volume of a cube is increasing at the rate of 8 c m^3//s . How fast is the surface area increasing when the length of an edge is 12 cm?

The volume of a cube is increasing at a rate of 7c m^3//s ec How fast is the surface area increasing when the length of an edge is 12cm?

CENGAGE PHYSICS ENGLISH-CALORIMETRY-Single Correct
  1. The wavelength of maximum energy released during an atomic axplosion w...

    Text Solution

    |

  2. The rectangular surface of area 8 cm xx 4 cm of a black body at temper...

    Text Solution

    |

  3. A solid copper cube of edges 1 cm is suspended in an evacuated enclosu...

    Text Solution

    |

  4. A sphere, a cube and a thin circular pate are heated to the same tempe...

    Text Solution

    |

  5. A sphere and a cube of same material and same volume are heated up to ...

    Text Solution

    |

  6. A substance cools from 75^@C to 70^@C in T1 minute, from 70^@C to 65^@...

    Text Solution

    |

  7. A liquid takes 5 minutes to cool from 80^@C to 50^@C . How much time w...

    Text Solution

    |

  8. A body takes T minutes to cool from 62^@C to 61^@C when the surroundin...

    Text Solution

    |

  9. The rates of cooling of two different liquids put in exactly similar c...

    Text Solution

    |

  10. Hot water cools from 60^@C to 50^@C in the first 10 min and to 42^@C i...

    Text Solution

    |

  11. There are two thin spheres A and B of the same material and same thick...

    Text Solution

    |

  12. As shown in Fig. AB is rod of length 30 cm and area of cross section 1...

    Text Solution

    |

  13. Two rods are joined between fixed supports as shown in the figure. Con...

    Text Solution

    |

  14. A rod of length l and cross sectional area A has a variable conductivi...

    Text Solution

    |

  15. A black body emits radiation at the rate P when its temperature is T. ...

    Text Solution

    |

  16. A solid metallic sphere of diameter 20 cm and mass 10 kg is heated to ...

    Text Solution

    |

  17. The coefficient of linear expansion of an in homogeneous rod change li...

    Text Solution

    |

  18. A wire is made by attaching two segments together end to end. One segm...

    Text Solution

    |

  19. Heat is required to change 1 kg of ice at -20^@C into steam. Q1 is the...

    Text Solution

    |

  20. A block of wood is floating in water at 0^@ C. The temperature of wate...

    Text Solution

    |