Home
Class 11
PHYSICS
A string of length 40 cm and weighing 10...

A string of length 40 cm and weighing 10 g is attached to a spring at one end and to a fixed wall at the other end. The spring has a spring constant of `160 N m^-1` and is stretched by 1.0 cm. If a wave pulse is produced on the string near the wall, how much time will it take to reach the spring ?

Text Solution

AI Generated Solution

To solve the problem step by step, we will calculate the time taken for a wave pulse to travel along the string from the wall to the spring. ### Step 1: Convert Units First, we need to convert the given measurements into consistent units. The length of the string is given as 40 cm, which we can convert to meters: \[ L = 40 \text{ cm} = 0.40 \text{ m} \] The mass of the string is given as 10 g, which we can convert to kilograms: ...
Promotional Banner

Topper's Solved these Questions

  • TRAVELLING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Comprehension|45 Videos
  • TRANSMISSION OF HEAT

    CENGAGE PHYSICS ENGLISH|Exercise Single correct|9 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Multiple Correct|5 Videos

Similar Questions

Explore conceptually related problems

A string of linear mass density 0.5 g cm^-1 and a total length 30 cm is tied to a fixed wall at one end and to a frictionless ring at the other end. The ring can move on a vertical rod. A wave pulse is produced on the string which moves towards the ring at a speed of 20 cm s^-1 . The pulse is symmetric about its maximum which is located at a distance of 20 cm from the end joined to the ring. (a) Assuming that the wave is reflected from the ends without loss of energy, find the time taken by the string to regain its shape. (b) The shape of the string changes periodically with time. Find this time period. (c) What is the tension in the string ?

A spring of spring constant 5 xx 10^(3) N//m is stretched initially by 5 cm from the unstretched position. The work required to further stretch the spring by another 5 cm is .

A 1 m long rope, having a mass of 40 g , is fixed at one end and is tied to a light string at the other end. The tension in the string in 400 N . Find the wavelength in second overtone (in cm ).

One end of a spring of force constant k_1 is attached to the ceiling of an elevator. A block of mass 1.5kg is attached to the other end. Another spring of force constant k_2 is attached to the bottom of the mass and to the floor of the elevator as shown in figure. At equilibrium, the deformation in both the spring is equal and is 40cm . If the elevator moves with constant acceleration upward, the additional deformation in both the spring is 8cm . Find the elevator's accelerationn ( g=10ms^-2 ).

Two point masses of 3.0 kg and 1.0 kg are attached to opposite ends of a horizontal spring whose spring constant is 300 N m^(-1) as shown in the figure. The natural vibration frequency of the system is of the order of :

A spring has natural length 40 cm and spring constant 500 N//m . A block of mass 1 kg is attached at one end of the spring and other end of the spring is attached to a ceiling. The block is relesed from the position, where the spring has length 45 cm .

When a 20 g mass hangs attached to one end of a light spring of length 10 cm, the spring stretches by 2 cm. The mass is pulled down until the total length of the spring is 14 cm. The elastic energy, (in Joule) stored in the spring is :

A bead of mass m can slide without friction on a fixed circular horizontal ring of radius 3R having a centre at the point C. The bead is attached to one of the ends of spring of spring constant k. Natural length of spring is R and the other end of the spring is R and the other end of the spring is fixed at point O as shown in the figure. If the bead is released from position A, then the kinetic energy of the bead when it reaches point B is

l=24+3.5m One end of a spring is attached to a ceiling. When an object of mass m kilograms is attached to the other end of the spring, the spring stretches to a length of l centimeters as shown in the equation above. What is m when l is 73 ?

A string of mass 3 kg is under tension of 400 N. the length of the stretched string is 25 cm. if the transverse jerk is stuck at one end of the string how long does the disturbance take to reach the other end?