Home
Class 11
PHYSICS
Two tuning forks A and B give 4 beats//...

Two tuning forks `A and B` give ` 4 beats//s` when sounded together . The frequency of `A is 320 Hz`. When some wax is added to `B` and it is sounded with `A , 4 beats//s per second` are again heard . The frequency of `B` is

A

`312 Hz`

B

`316 Hz`

C

`324 Hz`

D

`328 Hz`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, let's break it down step by step: ### Step 1: Understand the concept of beats When two tuning forks are sounded together, the phenomenon of beats occurs due to the interference of sound waves from the two sources. The beat frequency is equal to the absolute difference between the frequencies of the two tuning forks. ### Step 2: Set up the equation for the initial situation Given: - Frequency of tuning fork A, \( f_A = 320 \, \text{Hz} \) - Beat frequency when A and B are sounded together, \( f_{beat} = 4 \, \text{beats/s} \) We can express this relationship as: \[ |f_A - f_B| = 4 \] This gives us two possible equations: 1. \( f_A - f_B = 4 \) 2. \( f_B - f_A = 4 \) ### Step 3: Solve for \( f_B \) Using the first equation: \[ 320 - f_B = 4 \implies f_B = 320 - 4 = 316 \, \text{Hz} \] Using the second equation: \[ f_B - 320 = 4 \implies f_B = 320 + 4 = 324 \, \text{Hz} \] Thus, the possible frequencies for tuning fork B are \( 316 \, \text{Hz} \) or \( 324 \, \text{Hz} \). ### Step 4: Analyze the effect of adding wax to tuning fork B When wax is added to tuning fork B, its frequency decreases. The problem states that after adding wax, the beat frequency remains the same at \( 4 \, \text{beats/s} \). ### Step 5: Determine the new frequency of B If we assume: - Case 1: \( f_B = 316 \, \text{Hz} \) initially - After waxing, \( f_B \) would decrease, making it less than \( 316 \, \text{Hz} \), which would increase the beat frequency with A, contradicting the information given. - Case 2: \( f_B = 324 \, \text{Hz} \) initially - After waxing, \( f_B \) would decrease, making it less than \( 324 \, \text{Hz} \). If it decreases to \( 320 \, \text{Hz} \), the beat frequency would still be \( |320 - 320| = 0 \), which is not the case. However, if it decreases to \( 316 \, \text{Hz} \), the beat frequency remains \( |320 - 316| = 4 \, \text{beats/s} \), which is consistent with the problem statement. ### Conclusion Thus, the frequency of tuning fork B before adding wax is: \[ f_B = 324 \, \text{Hz} \] ### Final Answer The frequency of tuning fork B is **324 Hz**. ---

To solve the problem, let's break it down step by step: ### Step 1: Understand the concept of beats When two tuning forks are sounded together, the phenomenon of beats occurs due to the interference of sound waves from the two sources. The beat frequency is equal to the absolute difference between the frequencies of the two tuning forks. ### Step 2: Set up the equation for the initial situation Given: - Frequency of tuning fork A, \( f_A = 320 \, \text{Hz} \) ...
Promotional Banner

Topper's Solved these Questions

  • SUPERPOSITION AND STANDING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Multiple|26 Videos
  • SUPERPOSITION AND STANDING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Assertion - Reasoning|6 Videos
  • SUPERPOSITION AND STANDING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Subjective|24 Videos
  • SOUND WAVES AND DOPPLER EFFECT

    CENGAGE PHYSICS ENGLISH|Exercise Integer|16 Videos
  • THERMODYNAMICS

    CENGAGE PHYSICS ENGLISH|Exercise 24|1 Videos

Similar Questions

Explore conceptually related problems

Two tunning forks A and B produce 4 beats per second when sounded simultaneously . The frequency of A is known to be 256 Hz . When B is loaded with a little wax 4 beats per second are again produced . Find the frequency of B before and after loading .

A tuning fork produces 4 beats per second when sounded togetehr with a fork of frequency 364 Hz. When the first fork is loaded with a little wax ten the number of beats becomes two per second. What is the frequency of the first fork?

A tunning fork of unknown frequency gives 4 beats per second when sounded with a fork of frequency 320Hz. When loaded with a little wax it give 3 beats per second. Find the unknown frequency.

Four tuning forks of frequencies 200,201,204 and 206 Hz are sounded together. The beat frequency will be

Two tuning forks A and B produce 4 beats//s when sounded together . A resonates to 32.4 cm of stretched wire and B is in resonance with 32 cm of the same wire . Determine the frequencies of the two tuning forks .

The frequency of tuning forks A and B are respectively 5% more and 4% less than the frequency of tuning fork C. When A and B are simultaneously excited, 9 beats per second are produced. Then the frequency of the tuning fork A (in Hz) is

The frequency of a tuning fork A is 5% greater than that of a standard fork K. The frequency of another fork B is 3% less than that of K. When A and B are vibrated simultaneously 4 beats per second are heard. Find the frequencies of A and B.

IF two tuning forks A and B are sounded together, they produce 4 beats per second. A is then slightly loaded with wax, they produce two beats when sounded again. The frequency of A is 256. The frequency of B will be

When a tuning fork A of unknown frequency is sounded with another tuning fork B of frequency 256Hz, then 3 beats per second are observed. After that A is loaded with wax and sounded, the again 3 beats per second are observed. The frequency of the tuning fork A is

Two tuning fork A and B are sounded together gives 5 beats per second. If frequency of B is 260 Hz and after loading A with was the beat frequency increases the frequency of A is

CENGAGE PHYSICS ENGLISH-SUPERPOSITION AND STANDING WAVES-Single Correct
  1. The equation of displacement of two waves are given as y(1) = 10 si...

    Text Solution

    |

  2. On sounding fork A with another tuning fork B of frequency 384 Hz , 6 ...

    Text Solution

    |

  3. Two tuning forks A and B give 4 beats//s when sounded together . The ...

    Text Solution

    |

  4. Forty - one forks are so arranged that each products 5 beat//s when s...

    Text Solution

    |

  5. The equation of a stationary wave is y = 0.8 cos ((pi x)/(20)) sin 20...

    Text Solution

    |

  6. The following equations represent progressive transverse waves z(1) ...

    Text Solution

    |

  7. Two pulses in a stretched string whose centres are initially 8 cm apar...

    Text Solution

    |

  8. Two identical sounds s(1) and s(2) reach at a point P phase. The resul...

    Text Solution

    |

  9. The ratio of intensities between two cohernt sound sources is 4:1. The...

    Text Solution

    |

  10. Mark the correct statement.

    Text Solution

    |

  11. Which of the following statements is correct for stationary waves

    Text Solution

    |

  12. A sound wave of wavelength lambda travels towards the right horizonta...

    Text Solution

    |

  13. A sonometer wire of length l vibrates in fundamental mode when excited...

    Text Solution

    |

  14. Two closed - end pipes , when sounded together produce 5 beats//s. If...

    Text Solution

    |

  15. Velocity of sound in air is 320 m//s. The resonant pipe shown in Fig. ...

    Text Solution

    |

  16. Waves of frequency 1000 Hz are produced in a Kundt's tube . The total ...

    Text Solution

    |

  17. In a Kundt's tube , the length of the iron rod is 1 m. The stationary ...

    Text Solution

    |

  18. Two strings A and B made of same material are stretched by same tensio...

    Text Solution

    |

  19. A closed organ pipe and an open organ pipe have their first overtones...

    Text Solution

    |

  20. Two organ pipe , both closed at one end , have lengths l and l + Delta...

    Text Solution

    |