Home
Class 12
PHYSICS
if y=x^2sinx+(3x)/(tanx), then (dy)/(dx)...

if `y=x^2sinx+(3x)/(tanx)`, then `(dy)/(dx)` will be

A

`2xsinx+x^2cosx+(3tanx-3xsec^2x)/(tan^2x)`

B

`2xsinx+(3xsec^2x-3tanx)/(tan^2x)`

C

`(x^2cosx+2xsinx-(3tanx-3xsec^2x))/(tan^2x)`

D

`(x^2cosx-2xsinx-(3tanx-3xsec^2x))/(tan^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = x^2 \sin x + \frac{3x}{\tan x} \), we will differentiate each term separately using the rules of differentiation. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = x^2 \sin x + \frac{3x}{\tan x} \] 2. **Differentiate the first term \( x^2 \sin x \)**: - We will use the product rule here, which states that if \( u = x^2 \) and \( v = \sin x \), then: \[ \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \] - Here, \( u = x^2 \) and \( v = \sin x \): - \( \frac{du}{dx} = 2x \) - \( \frac{dv}{dx} = \cos x \) - Applying the product rule: \[ \frac{d}{dx}(x^2 \sin x) = x^2 \cos x + \sin x \cdot 2x = x^2 \cos x + 2x \sin x \] 3. **Differentiate the second term \( \frac{3x}{\tan x} \)**: - We will use the quotient rule here, which states that if \( u = 3x \) and \( v = \tan x \), then: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] - Here, \( u = 3x \) and \( v = \tan x \): - \( \frac{du}{dx} = 3 \) - \( \frac{dv}{dx} = \sec^2 x \) - Applying the quotient rule: \[ \frac{d}{dx}\left(\frac{3x}{\tan x}\right) = \frac{\tan x \cdot 3 - 3x \cdot \sec^2 x}{\tan^2 x} \] 4. **Combine the results**: - Now, we can combine the derivatives from both terms: \[ \frac{dy}{dx} = \left(x^2 \cos x + 2x \sin x\right) + \frac{3 \tan x - 3x \sec^2 x}{\tan^2 x} \] 5. **Final expression**: - Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = x^2 \cos x + 2x \sin x + \frac{3 \tan x - 3x \sec^2 x}{\tan^2 x} \]

To find the derivative of the function \( y = x^2 \sin x + \frac{3x}{\tan x} \), we will differentiate each term separately using the rules of differentiation. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = x^2 \sin x + \frac{3x}{\tan x} \] ...
Promotional Banner

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise subjective type|51 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Multiple correct Answer Type|54 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS ENGLISH|Exercise Integer|5 Videos
  • COULOMB LAW AND ELECTRIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise Single Answer Correct Type|22 Videos

Similar Questions

Explore conceptually related problems

If y=2sinx ,then (dy)/(dx) will be

If y=x^2sinx ,then (dy)/(dx) will be..

y=e^(sin x)/sinx then (dy)/(dx)=

If y=x^(cosx)+(sinx)^(tanx) , find (dy)/(dx)

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

if y=log_(sinx) tanx then ((dy)/(dx)) _(pi/4) is

if y=log_(sinx) tanx then ((dy)/(dx)) _(pi/4) is

If y=(sinx)/(e^x) , find (dy)/(dx)

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

CENGAGE PHYSICS ENGLISH-CENGAGE PHYSICS DPP-Single Correct Answer type
  1. If y=sin(t^2), then (d^2y)/(dt^2) will be

    Text Solution

    |

  2. The displace ment of a body at any time t after starting is given by s...

    Text Solution

    |

  3. if y=x^2sinx+(3x)/(tanx), then (dy)/(dx) will be

    Text Solution

    |

  4. The value of the function (x-1)(x-2)^2 at its maxima is

    Text Solution

    |

  5. The adjacent sides of a rectangle with given perimeter as 100 cm and e...

    Text Solution

    |

  6. The area of a rectangle will be maximum for the given perimeter, when ...

    Text Solution

    |

  7. if x+y=10, thent he maximum value of xy is

    Text Solution

    |

  8. the sum of two numbers is fixed. Then its multiplication is maximum, w...

    Text Solution

    |

  9. If sum of two numbers is 3, then maximum value of the product of first...

    Text Solution

    |

  10. If from a wire of length 36 metre a rectangle of greatest area is made...

    Text Solution

    |

  11. 20 is divided into two parts so that product of cube of one quantity a...

    Text Solution

    |

  12. Let x and y be two real variable such that x >0 and x y=1 . Find the m...

    Text Solution

    |

  13. Divide 20 into two parts such that the product of one part and the cub...

    Text Solution

    |

  14. The maximum and minimum values of x^3-18x^2+96x in interval (0,9) are

    Text Solution

    |

  15. The maximum values of sinx(1+cosx) will be at the

    Text Solution

    |

  16. The function f(x)=2x^3-3x^2-12x+4 has

    Text Solution

    |

  17. The perimeter of a sector is p. The area of the sector is maximum when...

    Text Solution

    |

  18. The minimum value of x^(2) + (250)/(x) is

    Text Solution

    |

  19. A man 2 metres high walks at a uniform speed of 5 km/hr away from a ...

    Text Solution

    |

  20. A ladder 5 m in length is resting against vertical wall. The bottom of...

    Text Solution

    |