Home
Class 12
PHYSICS
(d)/(dx)(sqrtx+(1)/(sqrtx))^2=...

`(d)/(dx)(sqrtx+(1)/(sqrtx))^2=`

A

`1-(1)/(x^2)`

B

`1+(1)/(x^2)`

C

`1-(1)/(2x)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2\), we will follow these steps: ### Step 1: Rewrite the function Let \( f(x) = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 \). ### Step 2: Expand the function using the identity Using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \), we can expand \( f(x) \): \[ f(x) = \left(\sqrt{x}\right)^2 + \left(\frac{1}{\sqrt{x}}\right)^2 + 2\left(\sqrt{x}\right)\left(\frac{1}{\sqrt{x}}\right) \] This simplifies to: \[ f(x) = x + \frac{1}{x} + 2 \] ### Step 3: Differentiate the function Now we differentiate \( f(x) \): \[ \frac{d}{dx} f(x) = \frac{d}{dx} \left( x + \frac{1}{x} + 2 \right) \] Using the differentiation rules: - The derivative of \( x \) is \( 1 \). - The derivative of \( \frac{1}{x} \) is \( -\frac{1}{x^2} \). - The derivative of a constant (2) is \( 0 \). So, \[ \frac{d}{dx} f(x) = 1 - \frac{1}{x^2} + 0 \] Thus, \[ \frac{d}{dx} f(x) = 1 - \frac{1}{x^2} \] ### Final Answer The derivative is: \[ \frac{d}{dx}\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 = 1 - \frac{1}{x^2} \]

To solve the problem \(\frac{d}{dx}\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2\), we will follow these steps: ### Step 1: Rewrite the function Let \( f(x) = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 \). ### Step 2: Expand the function using the identity Using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \), we can expand \( f(x) \): \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Comprehension Type|31 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Multiple correct Answer Type|54 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Fill in the blanks type|26 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS ENGLISH|Exercise Integer|5 Videos
  • COULOMB LAW AND ELECTRIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise Single Answer Correct Type|22 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) If y=(sqrtx+1)/(sqrtx-1)

y= log(sqrtx+1/sqrtx)

Integrate: (a) (3)/(2)sqrt3 (b) (3)/(2sqrtx) (c ) sqrtx+(1)/(sqrtx)

int_(1)^(2)(dx)/(sqrtx-sqrt(x-1))

Evaluate (d)/(dx)(int_(1//x)^(sqrtx) cos t^(2) dt)

The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

If y=e^(sqrt(x))+e^(-sqrt(x)) , then (dy)/(dx) is equal to (a) (e^(sqrt(x)))/(2sqrt(x)) (b) (e^(sqrt(x))-e^(-sqrt(x)))/(2sqrtx) 1/(2sqrt(x))sqrt(y^2-4) (d) 1/(2sqrt(x))sqrt(y^2+4)

lim_(x->1)sqrt(x+8)/sqrtx

int ((2+sqrtx)dx )/((x+1+sqrtx)^(2)) is equal to:

The value of int(e^(sqrtx))/(sqrtx(1+e^(2sqrtx)))dx is equal to (where, C is the constant of integration)