Home
Class 12
PHYSICS
If y=cos(sinx^2),then at x=sqrt((pi)/(2)...

If `y=cos(sinx^2)`,then at `x=sqrt((pi)/(2))`,`(dy)/(dx)=`

A

-2

B

2

C

`-2sqrt((pi)/(2))`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of \( y = \cos(\sin(x^2)) \) with respect to \( x \) and evaluate it at \( x = \sqrt{\frac{\pi}{2}} \). ### Step-by-Step Solution: 1. **Identify the function**: We have \( y = \cos(\sin(x^2)) \). 2. **Differentiate using the chain rule**: \[ \frac{dy}{dx} = \frac{d}{dx}[\cos(\sin(x^2))] = -\sin(\sin(x^2)) \cdot \frac{d}{dx}[\sin(x^2)] \] 3. **Differentiate \( \sin(x^2) \)**: \[ \frac{d}{dx}[\sin(x^2)] = \cos(x^2) \cdot \frac{d}{dx}[x^2] = \cos(x^2) \cdot 2x \] 4. **Substituting back**: Now substitute this back into the derivative: \[ \frac{dy}{dx} = -\sin(\sin(x^2)) \cdot (\cos(x^2) \cdot 2x) \] 5. **Evaluate at \( x = \sqrt{\frac{\pi}{2}} \)**: - First, calculate \( x^2 \): \[ x^2 = \left(\sqrt{\frac{\pi}{2}}\right)^2 = \frac{\pi}{2} \] - Now substitute \( x^2 \) into the expression: \[ \frac{dy}{dx} = -\sin(\sin(\frac{\pi}{2})) \cdot (\cos(\frac{\pi}{2}) \cdot 2\sqrt{\frac{\pi}{2}}) \] 6. **Evaluate \( \sin(\frac{\pi}{2}) \) and \( \cos(\frac{\pi}{2}) \)**: - \( \sin(\frac{\pi}{2}) = 1 \) - \( \cos(\frac{\pi}{2}) = 0 \) 7. **Final evaluation**: \[ \frac{dy}{dx} = -\sin(1) \cdot (0 \cdot 2\sqrt{\frac{\pi}{2}}) = 0 \] Thus, the final answer is: \[ \frac{dy}{dx} \bigg|_{x = \sqrt{\frac{\pi}{2}}} = 0 \]

To solve the problem, we need to find the derivative of \( y = \cos(\sin(x^2)) \) with respect to \( x \) and evaluate it at \( x = \sqrt{\frac{\pi}{2}} \). ### Step-by-Step Solution: 1. **Identify the function**: We have \( y = \cos(\sin(x^2)) \). 2. **Differentiate using the chain rule**: \[ ...
Promotional Banner

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Comprehension Type|31 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Multiple correct Answer Type|54 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Fill in the blanks type|26 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS ENGLISH|Exercise Integer|5 Videos
  • COULOMB LAW AND ELECTRIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise Single Answer Correct Type|22 Videos

Similar Questions

Explore conceptually related problems

If y=sinx^(2) then (dy)/(dx)=

If y = (sinx)^x then dy/dx

If y=sin(sinx) , prove that (d^2y)/(dx^2)+tanxdot(dy)/(dx)+y\ cos^2x=0 .

If y="sin"(sinx),"prove that" (d^2y)/(dx^2)+tanx(dy)/(dx)+ycos^2x=0.

If y=sqrt(sinx+y) , then find (dy)/(dx)

If y=cos^(-1)((2cosx-3sinx)/(sqrt(13))) , then (dy)/(dx) , is

If y=sqrt(sinx+y) , then (dy)/(dx)= (a) (sinx)/(2y-1) (b) (sinx)/(1-2y) (c) (cosx)/(1-2y) (d) (cosx)/(2y-1)

If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((dy)/(dx))^(2)|at theta=(pi)/(2) is:

If y=sqrt(sinx+y) then (dy)/(dx)= (a) (sinx)/(2y-1) (b) (sinx)/(1-2y) (c) (cosx)/(1-2y) (d) (cosx)/(2y-1)

y(dy)/(dx)sinx=cosx(sinx-(y^2)/2); where at x=pi/2,