Home
Class 12
PHYSICS
If f(x)=sqrt(ax)+(a^2)/(sqrt(ax)), then ...

If `f(x)=sqrt(ax)+(a^2)/(sqrt(ax))`, then `f^`(a)=`

A

-1

B

1

C

0

D

a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f(x) = \sqrt{ax} + \frac{a^2}{\sqrt{ax}} \) and then evaluate it at \( x = a \). ### Step-by-step Solution: 1. **Rewrite the Function**: We start with the function: \[ f(x) = \sqrt{ax} + \frac{a^2}{\sqrt{ax}} \] We can express \( \sqrt{ax} \) as \( \sqrt{a} \cdot \sqrt{x} \) and \( \frac{a^2}{\sqrt{ax}} \) as \( a^2 \cdot \frac{1}{\sqrt{ax}} = a^2 \cdot \frac{1}{\sqrt{a} \cdot \sqrt{x}} = a^{3/2} \cdot x^{-1/2} \). 2. **Differentiate \( f(x) \)**: The function can now be rewritten as: \[ f(x) = \sqrt{a} \cdot x^{1/2} + a^{3/2} \cdot x^{-1/2} \] We will differentiate \( f(x) \) using the power rule: \[ f'(x) = \frac{d}{dx}(\sqrt{a} \cdot x^{1/2}) + \frac{d}{dx}(a^{3/2} \cdot x^{-1/2}) \] - The derivative of \( \sqrt{a} \cdot x^{1/2} \) is: \[ \sqrt{a} \cdot \frac{1}{2} x^{-1/2} = \frac{\sqrt{a}}{2\sqrt{x}} \] - The derivative of \( a^{3/2} \cdot x^{-1/2} \) is: \[ a^{3/2} \cdot \left(-\frac{1}{2} x^{-3/2}\right) = -\frac{a^{3/2}}{2x^{3/2}} \] Therefore, combining these results, we have: \[ f'(x) = \frac{\sqrt{a}}{2\sqrt{x}} - \frac{a^{3/2}}{2x^{3/2}} \] 3. **Evaluate \( f'(a) \)**: Now we substitute \( x = a \) into \( f'(x) \): \[ f'(a) = \frac{\sqrt{a}}{2\sqrt{a}} - \frac{a^{3/2}}{2a^{3/2}} \] Simplifying this gives: \[ f'(a) = \frac{1}{2} - \frac{1}{2} = 0 \] ### Final Answer: Thus, the value of \( f'(a) \) is: \[ \boxed{0} \]

To solve the problem, we need to find the derivative of the function \( f(x) = \sqrt{ax} + \frac{a^2}{\sqrt{ax}} \) and then evaluate it at \( x = a \). ### Step-by-step Solution: 1. **Rewrite the Function**: We start with the function: \[ f(x) = \sqrt{ax} + \frac{a^2}{\sqrt{ax}} ...
Promotional Banner

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Comprehension Type|31 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Multiple correct Answer Type|54 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Fill in the blanks type|26 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS ENGLISH|Exercise Integer|5 Videos
  • COULOMB LAW AND ELECTRIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise Single Answer Correct Type|22 Videos

Similar Questions

Explore conceptually related problems

sqrt(ax+b)

If f(x)=(x-4)/(2sqrt(x)) , then find f'(1)

The derivative of f(x) = (sqrt(x) + (1)/(sqrt(x)))^(2) is

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x)=(a+sqrt(a^2-x^2)+x)/(sqrt(a^2-x^2)+a-x) where a>0 then f'(0) has the value equal to

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

If f(x) = x^(sqrtx) , then f(sqrt2) =

If f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then the value of 10 f'(102^(+)) , is