Home
Class 12
PHYSICS
If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2)...

If `x=(1-t^2)/(1+t^2)` and `y=(2at)/(1+t^2)`, then `(dy)/(dx)=`

A

`(a(1-t^2))/(2t)`

B

`(a(t^2-1))/(2t)`

C

`(a(t^2+1))/(2t)`

D

`(a(t^2-1))/(t)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = \frac{1 - t^2}{1 + t^2}\) and \(y = \frac{2at}{1 + t^2}\), we can use the formula: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] ### Step 1: Find \(\frac{dx}{dt}\) Given: \[ x = \frac{1 - t^2}{1 + t^2} \] Using the quotient rule for differentiation, where \(f(t) = 1 - t^2\) and \(g(t) = 1 + t^2\): \[ \frac{dx}{dt} = \frac{f' \cdot g - f \cdot g'}{g^2} \] Calculating \(f'\) and \(g'\): - \(f' = -2t\) - \(g' = 2t\) Now substituting into the quotient rule: \[ \frac{dx}{dt} = \frac{(-2t)(1 + t^2) - (1 - t^2)(2t)}{(1 + t^2)^2} \] Expanding the numerator: \[ = \frac{-2t - 2t^3 - 2t + 2t^3}{(1 + t^2)^2} \] \[ = \frac{-4t}{(1 + t^2)^2} \] ### Step 2: Find \(\frac{dy}{dt}\) Given: \[ y = \frac{2at}{1 + t^2} \] Using the quotient rule again, where \(f(t) = 2at\) and \(g(t) = 1 + t^2\): Calculating \(f'\) and \(g'\): - \(f' = 2a\) - \(g' = 2t\) Now substituting into the quotient rule: \[ \frac{dy}{dt} = \frac{(2a)(1 + t^2) - (2at)(2t)}{(1 + t^2)^2} \] Expanding the numerator: \[ = \frac{2a + 2at^2 - 4at^2}{(1 + t^2)^2} \] \[ = \frac{2a - 2at^2}{(1 + t^2)^2} \] \[ = \frac{2a(1 - t^2)}{(1 + t^2)^2} \] ### Step 3: Calculate \(\frac{dy}{dx}\) Now substituting \(\frac{dy}{dt}\) and \(\frac{dx}{dt}\) into the formula: \[ \frac{dy}{dx} = \frac{\frac{2a(1 - t^2)}{(1 + t^2)^2}}{\frac{-4t}{(1 + t^2)^2}} \] The \((1 + t^2)^2\) cancels out: \[ = \frac{2a(1 - t^2)}{-4t} \] \[ = -\frac{a(1 - t^2)}{2t} \] Thus, the final result is: \[ \frac{dy}{dx} = -\frac{a(1 - t^2)}{2t} \]

To find \(\frac{dy}{dx}\) given the parametric equations \(x = \frac{1 - t^2}{1 + t^2}\) and \(y = \frac{2at}{1 + t^2}\), we can use the formula: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] ### Step 1: Find \(\frac{dx}{dt}\) ...
Promotional Banner

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Comprehension Type|31 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Multiple correct Answer Type|54 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Fill in the blanks type|26 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS ENGLISH|Exercise Integer|5 Videos
  • COULOMB LAW AND ELECTRIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise Single Answer Correct Type|22 Videos

Similar Questions

Explore conceptually related problems

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

If x=a((1+t^2)/(1-t^2))"and"y=(2t)/(1-t^2),"f i n d"(dy)/(dx)

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If sinx=(2t)/(1+t^2),tany=(2t)/(1-t^2),"f i n d"(dy)/(dx)dot

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

If x=(2t)/(1+t^2),y=(1-t^2)/(1+t^2),t h e nfin d(dy)/(dx)a tt=2.