Home
Class 12
PHYSICS
If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ...

If `x=(1-t^2)/(1+t^2)` and `y=(2t)/(1+t^2)` ,then `(dy)/(dx)=`

A

`(-y)/(x)`

B

`(y)/(x)`

C

`(-x)/(y)`

D

`(x)/(y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \(\frac{dy}{dx}\) given the parametric equations \(x = \frac{1 - t^2}{1 + t^2}\) and \(y = \frac{2t}{1 + t^2}\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) We start by finding \(\frac{dx}{dt}\). \[ x = \frac{1 - t^2}{1 + t^2} \] Using the quotient rule for differentiation, where \(f(t) = 1 - t^2\) and \(g(t) = 1 + t^2\): \[ \frac{dx}{dt} = \frac{f' \cdot g - g' \cdot f}{g^2} \] Calculating \(f'\) and \(g'\): - \(f' = -2t\) - \(g' = 2t\) Now substituting into the quotient rule: \[ \frac{dx}{dt} = \frac{(-2t)(1 + t^2) - (2t)(1 - t^2)}{(1 + t^2)^2} \] Simplifying the numerator: \[ = \frac{-2t - 2t^3 - 2t + 2t^3}{(1 + t^2)^2} = \frac{-4t}{(1 + t^2)^2} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Next, we find \(\frac{dy}{dt}\). \[ y = \frac{2t}{1 + t^2} \] Using the quotient rule again, where \(f(t) = 2t\) and \(g(t) = 1 + t^2\): \[ \frac{dy}{dt} = \frac{f' \cdot g - g' \cdot f}{g^2} \] Calculating \(f'\) and \(g'\): - \(f' = 2\) - \(g' = 2t\) Now substituting into the quotient rule: \[ \frac{dy}{dt} = \frac{(2)(1 + t^2) - (2t)(2t)}{(1 + t^2)^2} \] Simplifying the numerator: \[ = \frac{2 + 2t^2 - 4t^2}{(1 + t^2)^2} = \frac{2 - 2t^2}{(1 + t^2)^2} = \frac{2(1 - t^2)}{(1 + t^2)^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Now, we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\frac{2(1 - t^2)}{(1 + t^2)^2}}{\frac{-4t}{(1 + t^2)^2}} \] The \((1 + t^2)^2\) terms cancel out: \[ \frac{dy}{dx} = \frac{2(1 - t^2)}{-4t} = \frac{-(1 - t^2)}{2t} \] ### Step 4: Express in terms of \(x\) and \(y\) From the original equations, we have: - \(x = \frac{1 - t^2}{1 + t^2}\) - \(y = \frac{2t}{1 + t^2}\) Thus, we can express \(1 - t^2\) in terms of \(x\): \[ 1 - t^2 = x(1 + t^2) \implies 1 - t^2 = x + xt^2 \] Rearranging gives: \[ t^2(1 + x) = 1 - x \implies t^2 = \frac{1 - x}{1 + x} \] Substituting \(t^2\) back into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{-(1 - t^2)}{2t} = \frac{-(1 - \frac{1 - x}{1 + x})}{2\sqrt{\frac{1 - x}{1 + x}}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{-\frac{2x}{1 + x}}{2\sqrt{\frac{1 - x}{1 + x}}} = -\frac{x}{\sqrt{(1 - x)(1 + x)}} \] ### Final Answer Thus, the final answer is: \[ \frac{dy}{dx} = -\frac{x}{\sqrt{(1 - x)(1 + x)}} \]

To solve the problem of finding \(\frac{dy}{dx}\) given the parametric equations \(x = \frac{1 - t^2}{1 + t^2}\) and \(y = \frac{2t}{1 + t^2}\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) We start by finding \(\frac{dx}{dt}\). \[ x = \frac{1 - t^2}{1 + t^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Comprehension Type|31 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Multiple correct Answer Type|54 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Fill in the blanks type|26 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS ENGLISH|Exercise Integer|5 Videos
  • COULOMB LAW AND ELECTRIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise Single Answer Correct Type|22 Videos

Similar Questions

Explore conceptually related problems

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

If x=a((1+t^2)/(1-t^2))"and"y=(2t)/(1-t^2),"f i n d"(dy)/(dx)

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If sinx=(2t)/(1+t^2),tany=(2t)/(1-t^2),"f i n d"(dy)/(dx)dot

If x=(2t)/(1+t^2),y=(1-t^2)/(1+t^2),t h e nfin d(dy)/(dx)a tt=2.

The eccentricity of the conic x=3((1-t^(2))/(1+t^(2))) and y=(2t)/(1+t^(2)) is

If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equal to