Home
Class 12
PHYSICS
If x=at^2,y=at,then (d^2y)/(dx^2)=...

If `x=at^2`,`y=at`,then `(d^2y)/(dx^2)=`

A

`-(1)/(t^2)`

B

`(1)/(2at^3)`

C

`-(1)/(t^3)`

D

`-(1)/(4at^3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^2y}{dx^2}\) given the equations \(x = at^2\) and \(y = at\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(t\) We start by differentiating \(y\) with respect to \(t\): \[ \frac{dy}{dt} = \frac{d(at)}{dt} = a \] ### Step 2: Differentiate \(x\) with respect to \(t\) Next, we differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = \frac{d(at^2)}{dt} = 2at \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule for parametric equations, we can find \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{a}{2at} = \frac{1}{2t} \] ### Step 4: Differentiate \(\frac{dy}{dx}\) with respect to \(t\) Now we differentiate \(\frac{dy}{dx}\) with respect to \(t\): \[ \frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{1}{2t}\right) = -\frac{1}{2t^2} \] ### Step 5: Find \(\frac{dx}{dt}\) again We already found \(\frac{dx}{dt} = 2at\). ### Step 6: Use the chain rule to find \(\frac{d^2y}{dx^2}\) Now we can find \(\frac{d^2y}{dx^2}\) using the relation: \[ \frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{1}{\frac{dx}{dt}} \] Substituting the values we have: \[ \frac{d^2y}{dx^2} = \left(-\frac{1}{2t^2}\right) \cdot \frac{1}{2at} = -\frac{1}{4at^3} \] ### Final Answer Thus, the final answer is: \[ \frac{d^2y}{dx^2} = -\frac{1}{4at^3} \] ---

To find \(\frac{d^2y}{dx^2}\) given the equations \(x = at^2\) and \(y = at\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(t\) We start by differentiating \(y\) with respect to \(t\): \[ \frac{dy}{dt} = \frac{d(at)}{dt} = a \] ...
Promotional Banner

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Comprehension Type|31 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Multiple correct Answer Type|54 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Fill in the blanks type|26 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS ENGLISH|Exercise Integer|5 Videos
  • COULOMB LAW AND ELECTRIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise Single Answer Correct Type|22 Videos

Similar Questions

Explore conceptually related problems

If x=a t^2,y=2a t , then (d^2y)/(dx^2) is equal to (a) -1/(t^2) (b) 1/(2a t^2) (c) -1/(t^3) (d) 1/(2a t^3)

If x=at^2,y=2 at then find (d^2y)/(dx^2) .

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

Solve: (d^2y)/dx^2=x

If x=t^2 and y=t^3 , find (d^2y)/(dx^2) .

If y=x^3 then (d^2y)/(dx^2) is..

If y=sinx , then (d^2y)/(dx^2) will be

If e^(x + y) = y^2 then (d^2y)/(dx^2) at ( -1, 1 ) is equal to :

If y=(x-x^2) , then find (d^2y)/(dx^2) .

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to