Home
Class 12
PHYSICS
If x=2cost-cos2t,y=2sint-sin2t,then at t...

If `x=2cost-cos2t`,`y=2sint-sin2t`,then at `t=(pi)/(4)`,`(dy)/(dx)=`

A

`sqrt2+1`

B

`sqrt(2+1)`

C

`(sqrt(2+1))/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(t = \frac{\pi}{4}\) for the given parametric equations \(x = 2\cos t - \cos 2t\) and \(y = 2\sin t - \sin 2t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = 2\cos t - \cos 2t \] To find \(\frac{dx}{dt}\), we differentiate \(x\): \[ \frac{dx}{dt} = \frac{d}{dt}(2\cos t) - \frac{d}{dt}(\cos 2t) \] Using the derivative of cosine: \[ \frac{dx}{dt} = -2\sin t + 2\sin 2t \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = 2\sin t - \sin 2t \] To find \(\frac{dy}{dt}\), we differentiate \(y\): \[ \frac{dy}{dt} = \frac{d}{dt}(2\sin t) - \frac{d}{dt}(\sin 2t) \] Using the derivative of sine: \[ \frac{dy}{dt} = 2\cos t - 2\cos 2t \] ### Step 3: Evaluate \(\frac{dx}{dt}\) and \(\frac{dy}{dt}\) at \(t = \frac{\pi}{4}\) Now we will substitute \(t = \frac{\pi}{4}\) into both derivatives. **For \(\frac{dx}{dt}\)**: \[ \frac{dx}{dt} = -2\sin\left(\frac{\pi}{4}\right) + 2\sin\left(2 \cdot \frac{\pi}{4}\right) \] \[ = -2\cdot\frac{1}{\sqrt{2}} + 2\cdot\sin\left(\frac{\pi}{2}\right) \] \[ = -\frac{2}{\sqrt{2}} + 2\cdot 1 = -\sqrt{2} + 2 \] **For \(\frac{dy}{dt}\)**: \[ \frac{dy}{dt} = 2\cos\left(\frac{\pi}{4}\right) - 2\cos\left(2 \cdot \frac{\pi}{4}\right) \] \[ = 2\cdot\frac{1}{\sqrt{2}} - 2\cdot\cos\left(\frac{\pi}{2}\right) \] \[ = \sqrt{2} - 0 = \sqrt{2} \] ### Step 4: Calculate \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values we found: \[ \frac{dy}{dx} = \frac{\sqrt{2}}{2 - \sqrt{2}} \] ### Step 5: Simplify \(\frac{dy}{dx}\) To simplify: \[ \frac{dy}{dx} = \frac{\sqrt{2}}{2 - \sqrt{2}} \cdot \frac{2 + \sqrt{2}}{2 + \sqrt{2}} = \frac{\sqrt{2}(2 + \sqrt{2})}{(2 - \sqrt{2})(2 + \sqrt{2})} \] The denominator simplifies to: \[ (2 - \sqrt{2})(2 + \sqrt{2}) = 4 - 2 = 2 \] Thus: \[ \frac{dy}{dx} = \frac{\sqrt{2}(2 + \sqrt{2})}{2} = \frac{2\sqrt{2} + 2}{2} = \sqrt{2} + 1 \] ### Final Answer \[ \frac{dy}{dx} = \sqrt{2} + 1 \]

To find \(\frac{dy}{dx}\) at \(t = \frac{\pi}{4}\) for the given parametric equations \(x = 2\cos t - \cos 2t\) and \(y = 2\sin t - \sin 2t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = 2\cos t - \cos 2t \] To find \(\frac{dx}{dt}\), we differentiate \(x\): ...
Promotional Banner

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Comprehension Type|31 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Multiple correct Answer Type|54 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Fill in the blanks type|26 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS ENGLISH|Exercise Integer|5 Videos
  • COULOMB LAW AND ELECTRIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise Single Answer Correct Type|22 Videos

Similar Questions

Explore conceptually related problems

If x=2cost-cos2t ,y=2sint-sin2t ,"f i n d"(d^2y)/(dx^2)"a t"t=pi/2dot

If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

x= 2 cos t -cos 2t ,y=2 sin t-sin 2t Find d y / d x

If x=asin2t(1+cos2t) and y=bcos2t(1-cos2t) , show that at t=pi/4 , (dy)/(dx)=b/a .

If x=cost(3-2\ cos^2t) and y=sint(3-2sin^2t) find the value of (dy)/(dx) at t=pi/4

If x=a(cos2t+2tsin2t) and y=a(sin2t-2tcos2t) , then find (dy)/(dx) .

If x=asin2t(1+cos2t) and y=bcos2t(1-cos2t), show that at pi/4,(dy)/(dx)=b/adot

If x=a(cos t+tsint) and y=a(sint-tcost) , then find (d^2y)/(dx^2)

If x= e^(cos2t) and y = e^(sin2t) , then prove that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=a e^t(sint+cost) and y=a e^t(sint-cost), prove that (dy)/(dx)=(x+y)/(x-y)dot