Home
Class 12
PHYSICS
If y=asinx+bcosx ,t h e ny^2+((dy)/(dx))...

If `y=asinx+bcosx ,t h e ny^2+((dy)/(dx))^2` is a function of `x` (b) function of`y` function of `xa n dy` (d) constant

A

function of x

B

function of y

C

function x and y

D

constant

Text Solution

Verified by Experts

The correct Answer is:
D

`y=asinx+bcosx`
Differentiating with respect to x, we get
`(dy)/(dx)=acosx-bsinx`
`Now((dy)/(dx))^(2)=(acosx-bsinx)^(2)`
`=a^(2)cos^(2)x+b^(2)sin^(2)x-2absinxcosx`
and `y^(2)=(asinx+bcosx)^(2)`
`=a^(2)sin^(2)x+b^(2)cos^(2)x+2absinxcosx`
So, `((dy)/(dx))^(2)+y^(2)=a^(2)(sin^(2)x+cos^(2)x)+b^(2)(sin^(2)x+cos^(2)x)`
Hence `((dy)/(dx))^(2)+y^(2)=(a^(2)+b^(2))=` constant
Promotional Banner

Topper's Solved these Questions

  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Comprehension Type|31 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Multiple correct Answer Type|54 Videos
  • CENGAGE PHYSICS DPP

    CENGAGE PHYSICS ENGLISH|Exercise Fill in the blanks type|26 Videos
  • CAPACITOR AND CAPACITANCE

    CENGAGE PHYSICS ENGLISH|Exercise Integer|5 Videos
  • COULOMB LAW AND ELECTRIC FIELD

    CENGAGE PHYSICS ENGLISH|Exercise Single Answer Correct Type|22 Videos

Similar Questions

Explore conceptually related problems

If y=asinx+bcosx , then y^2+((dy)/(dx))^2 is a (a)function of x (b) function of y (c)function of x and y (d) constant

If x y+y^2=tanx+y ,t h e nfin d(dy)/(dx)dot

If y^2=a x^2+b x+c , then y^3(d^2y)/(dx^2) is (a) a constant (b) a function of x only (c) a function of y only (d) a function of x and y

If y^2=a x^2+b x+c , then y^3(d^2y)/(dx^2) is (a) a constant (b) a function of x only (c) a function of y only (d) a function of x and y

If e^y(x+1)=1,s howt h a t(d^2y)/(dx^2)=((dy)/(dx))^2dot

If e^y(x+1)=1,s howt h a t(d^2y)/(dx^2)=((dy)/(dx))^2dot

Find (dy)/(dx) for the function: y= Sin 5x

Find (dy)/(dx) for the function: y= x^(1/2) + Sin 2x

If y=sqrt(log{sin((x^2)/3-1)}),t h e nfin d(dy)/(dx)dot

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .