Home
Class 12
PHYSICS
The value of the function (x-1)(x-2)^2 a...

The value of the function `(x-1)(x-2)^2` at its maxima is

A

1

B

2

C

0

D

`(4)/(27)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = (x-1)(x-2)^2 \), we will follow these steps: ### Step 1: Expand the Function First, we will expand the function to make differentiation easier. \[ f(x) = (x-1)(x-2)^2 \] Expanding \( (x-2)^2 \): \[ (x-2)^2 = x^2 - 4x + 4 \] Now substituting back into \( f(x) \): \[ f(x) = (x-1)(x^2 - 4x + 4) \] Now, distribute \( (x-1) \): \[ f(x) = x(x^2 - 4x + 4) - 1(x^2 - 4x + 4) \] \[ = x^3 - 4x^2 + 4x - x^2 + 4x - 4 \] \[ = x^3 - 5x^2 + 8x - 4 \] ### Step 2: Differentiate the Function Next, we differentiate \( f(x) \) with respect to \( x \): \[ f'(x) = 3x^2 - 10x + 8 \] ### Step 3: Find Critical Points To find the critical points, we set the derivative equal to zero: \[ 3x^2 - 10x + 8 = 0 \] Now we will factor or use the quadratic formula: Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 3, b = -10, c = 8 \): \[ x = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 3 \cdot 8}}{2 \cdot 3} \] \[ = \frac{10 \pm \sqrt{100 - 96}}{6} \] \[ = \frac{10 \pm 2}{6} \] This gives us: \[ x = \frac{12}{6} = 2 \quad \text{and} \quad x = \frac{8}{6} = \frac{4}{3} \] ### Step 4: Determine Maxima or Minima Now we will use the second derivative test to determine whether these critical points are maxima or minima. First, we find the second derivative: \[ f''(x) = 6x - 10 \] Now we evaluate \( f''(x) \) at the critical points: 1. For \( x = \frac{4}{3} \): \[ f''\left(\frac{4}{3}\right) = 6 \cdot \frac{4}{3} - 10 = 8 - 10 = -2 \quad (\text{negative, hence maximum}) \] 2. For \( x = 2 \): \[ f''(2) = 6 \cdot 2 - 10 = 12 - 10 = 2 \quad (\text{positive, hence minimum}) \] ### Step 5: Calculate Maximum Value The maximum value occurs at \( x = \frac{4}{3} \). Now we calculate \( f\left(\frac{4}{3}\right) \): \[ f\left(\frac{4}{3}\right) = \left(\frac{4}{3} - 1\right)\left(\frac{4}{3} - 2\right)^2 \] \[ = \left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)^2 \] \[ = \frac{1}{3} \cdot \frac{4}{9} = \frac{4}{27} \] Thus, the maximum value of the function \( f(x) \) is: \[ \boxed{\frac{4}{27}} \]

To find the maximum value of the function \( f(x) = (x-1)(x-2)^2 \), we will follow these steps: ### Step 1: Expand the Function First, we will expand the function to make differentiation easier. \[ f(x) = (x-1)(x-2)^2 \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

For which values of x , the function f(x)=x/(x^2+1) is increasing and for which value of x , it is decreasing.

For which values of x , the function f(x)=x/(x^2+1) is increasing and for which values of x , it is decreasing.

The maximum value of the function f(x) = (1)/( 4x^(2) + 2 x + 1) is

Difference between the greatest and the least values of the function f(x)=x(ln x-2) on [1,e^2] is

Least value of the function , f(x)=2^(x^2)-1+2/(2^(x^2)+1) is :

Find the local extremum values of the following functions: f(x)=(x-1)(x-2)^2

Find the value of k, so that the function f(x) = {(kx^2 + 5, if x le 1), (2, if x gt 1):} is continuous at x = 1

For what value of k is the function f(x)={(x^2-1)/(x-1),\ \ \ x!=1k ,\ \ \ x=1 continuous at x=1 ?

Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function f(x)=2x^3-21 x^2+36 x-20 .

Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function f(x)=2x^3-21x^2+36 x-20.